121 research outputs found

    Implementation and comparison of iSCSI over RDMA

    Get PDF
    iSCSI is an emerging storage network technology that allows for block-level access to disk drives over a computer network. Since iSCSI runs over the very ubiquitous TCP/IP protocol it has many advantages over its more proprietary alternatives. Due to the recent movement toward 10 gigabit Ethernet, storage vendors are interested to see how this large increase in network bandwidth could benefit the iSCSI protocol. In order to make full use of the bandwidth provided by a 10 gigabit Ethernet link, specialized Remote Direct Memory Access hardware is being developed to offload processing and reduce the data-copy-overhead found in a standard TCP/IP network stack. This thesis focuses on the development of an iSCSI implementation that is capable of supporting this new hardware and the evaluation of its performance. This thesis depicts the approach used to implement the iSCSI Extensions for Remote Direct Memory Access (iSER) with the UNH iSCSI reference implementation. This approach involves a three step process: moving UNH-iSCSI from the Linux kernel to the Linux user-space, adding support for the iSER extensions to our user-space iSCSI and finally moving everything back into the Linux kernel. In addition to a description of the implementation, results are given that demonstrate the performance of the completed iSER-assisted iSCSI implementation

    The global unified parallel file system (GUPFS) project: FY 2002 activities and results

    Full text link

    Implementation and Evaluation of iSCSI over RDMA

    Full text link
    iSCSI is an emerging storage network technology that al-lows block-level access to storage devices, such as disk drives, over a computer network. Since iSCSI runs over the ubiquitous TCP/IP protocol, it has many advantages over its more proprietary alternatives. Due to the recent movement toward 10 gigabit Ethernet, storage vendors are interested to see the benefits this large increase in network bandwidth could bring to iSCSI. In order to make full use of the bandwidth provided by a 10 gigabit Ethernet link, specialized Remote Direct Memory Access hardware is being developed to offload processing and reduce the data-copy-overhead found in a standard TCP/IP network stack. This paper focuses on the development of an iSCSI implementation that is capa

    Benchmarking of IP-based Network Storage Systems

    Get PDF
    Mobile platforms with access to high speed wireless network have become ubiquitous. Advancements in network technology and consumer electronics have brought traditional storage systems into offices and homes. Services based on cloud technologies, including object based storage, have gained popularity among both private users and enterprises. However, there is still a lack of systematic evaluation of both traditional storage systems and cloud based object storage in a mobile and wireless context. In this thesis, we evaluate the performance of three drastically different storage systems, namely NFS, iSCSI, and OpenStack Swift, which can potentially be used by mobile platforms over wireless network. We build a testbed and an in house, ad hoc microbenchmark to study the impact of various network complexities and different access behaviours of application. In addition, we employ two widely used macrobenchmarks -- PostMark and FileBench -- to simulate the workloads of typical applications. We find that: (1) iSCSI excels in networks whose condition is as good as LAN; (2) NFS and Swift are more suitable for complex networks such as wireless network and WAN; (3) Swift is a viable replacement for NFS in all scenarios; and (4) System configuration on the client side impacts storage performance significantly and deserve adequate attention. Furthermore, we make several recommendations to practitioners and point out numerous future research directions

    NELIOTA: The wide-field, high-cadence lunar monitoring system at the prime focus of the Kryoneri telescope

    Full text link
    We present the technical specifications and first results of the ESA-funded, lunar monitoring project "NELIOTA" (NEO Lunar Impacts and Optical TrAnsients) at the National Observatory of Athens, which aims to determine the size-frequency distribution of small Near-Earth Objects (NEOs) via detection of impact flashes on the surface of the Moon. For the purposes of this project a twin camera instrument was specially designed and installed at the 1.2 m Kryoneri telescope utilizing the fast-frame capabilities of scientific Complementary Metal-Oxide Semiconductor detectors (sCMOS). The system provides a wide field-of-view (17.0' ×\times 14.4') and simultaneous observations in two photometric bands (R and I), reaching limiting magnitudes of 18.7 mag in 10 sec in both bands at a 2.5 signal-to-noise level. This makes it a unique instrument that can be used for the detection of NEO impacts on the Moon, as well as for any astronomy projects that demand high-cadence multicolor observations. The wide field-of-view ensures that a large portion of the Moon is observed, while the simultaneous, high-cadence, monitoring in two photometric bands makes possible, for the first time, the determination of the temperatures of the impacts on the Moon's surface and the validation of the impact flashes from a single site. Considering the varying background level on the Moon's surface we demonstrate that the NELIOTA system can detect NEO impact flashes at a 2.5 signal-to-noise level of ~12.4 mag in the I-band and R-band for observations made at low lunar phases ~0.1. We report 31 NEO impact flashes detected during the first year of the NELIOTA campaign. The faintest flash was at 11.24 mag in the R-band (about two magnitudes fainter than ever observed before) at lunar phase 0.32. Our observations suggest a detection rate of 1.96×1071.96 \times 10^{-7} events km2h1km^{-2} h^{-1}.Comment: Accepted for publication in A&

    Assessing the evidential value of artefacts recovered from the cloud

    Get PDF
    Cloud computing offers users low-cost access to computing resources that are scalable and flexible. However, it is not without its challenges, especially in relation to security. Cloud resources can be leveraged for criminal activities and the architecture of the ecosystem makes digital investigation difficult in terms of evidence identification, acquisition and examination. However, these same resources can be leveraged for the purposes of digital forensics, providing facilities for evidence acquisition, analysis and storage. Alternatively, existing forensic capabilities can be used in the Cloud as a step towards achieving forensic readiness. Tools can be added to the Cloud which can recover artefacts of evidential value. This research investigates whether artefacts that have been recovered from the Xen Cloud Platform (XCP) using existing tools have evidential value. To determine this, it is broken into three distinct areas: adding existing tools to a Cloud ecosystem, recovering artefacts from that system using those tools and then determining the evidential value of the recovered artefacts. From these experiments, three key steps for adding existing tools to the Cloud were determined: the identification of the specific Cloud technology being used, identification of existing tools and the building of a testbed. Stemming from this, three key components of artefact recovery are identified: the user, the audit log and the Virtual Machine (VM), along with two methodologies for artefact recovery in XCP. In terms of evidential value, this research proposes a set of criteria for the evaluation of digital evidence, stating that it should be authentic, accurate, reliable and complete. In conclusion, this research demonstrates the use of these criteria in the context of digital investigations in the Cloud and how each is met. This research shows that it is possible to recover artefacts of evidential value from XCP

    Dynamic load balancing based on live migration of virtual machines: Security threats and effects

    Get PDF
    Live migration of virtual machines (VMs) is the process of transitioning a VM from one virtual machine monitor (VMM) to another without halting the guest operating system, often between distinct physical machines, has opened new opportunities in computing. It allows a clean separation between hardware and software, and facilitates fault management, load balancing, and low-level system maintenance. Implemented by several existing virtualization products, live migration also aids in aspects such as high availability services, transparent mobility and consolidated management. While virtualization and live migration enable important new functionality, the combination introduces novel security challenges. A virtual machine monitor that incorporates a vulnerable implementation of live migration functionality may expose both the guest and host operating system to attack and result in a compromise of integrity. Given the large and increasing market for virtualization technology, a comprehensive understanding of virtual machine migration security is essential. So the main idea behind this thesis is to create a test environment that is suitable for experimenting and analyzing the security implications in case of exploitation of Live Migration of Virtual Machines. Using Live VM migration for dynamic load balancing or scheduling, this study determines workload hotspots in physical environment and through use of effective Live Migration process; tries to carry out resource profiling. By carrying out effective profiling, this thesis research is able to determine how much of each resource needs to be allocated to a VM. To understand exactly why process migration would not work in such scenarios and better understand Live VM Migration, this thesis tries to provide requisite incites as to which model is most appropriate for automatic load balancing for virtual machine infrastructure based on resource consumption. The security implications of exploiting the process of migration may end in unexpected results or results that are not noticeable. The scope of this thesis research is identifying these results and the causes for them

    Convergencia de tecnologías ópticas y Ethernet en LAN, MAN y SAN: nuevas arquitecturas, análisis de prestaciones y eficiencia energética

    Get PDF
    Mención Internacional en el título de doctorThe development of Information Technologies in the last decades, especially the last two, together with the introduction of computing devices to the mainstream consumer market, has had the logical consequence of the generalisation of the Internet access. The explosive development of the smartphone market has brought ubiquity to that generalisation, to the point that social interaction, content sharing and content production happens all the time. Social networks have all but increased that trend, maximising the diffusion of multimedia content: images, audio and video, which require high network capacities to be enjoyed quickly. This need for endless bandwidth and speed in information sharing brings challenges that affect mainly optical Metropolitan Area Networks (MANs) and Wide Area Networks (WANs). Furthermore, the wide spreading of Ethernet technologies has also brought the possibility to achieve economies of scale by either extending the reach of Ethernet Local Area Networks (LANs) to the MAN and WAN environment or even integrating them with Storage Area Networks (SANs). Finally, this generalisation of telecommunication technologies in every day life has as a consequence an important rise in energy consumption as well. Because of this, providing energy efficient strategies in networking is key to ensure the scalability of the whole Internet. In this thesis, the main technologies in all the fields mentioned above are reviewed, its core challenges identified and several contributions beyond the state of the art are suggested to improve today’s MANs andWANs. In the first contribution of this thesism, the integration between Metro Ethernet and Wavelength Division Multiplexion (WDM) optical transparent rings is explored by proposing an adaptation architecture to provide efficient broadcast and multicast. The second contribution explores the fusion between transparent WDM and OCDMA architectures to simplify medium access in a ring. Regarding SANs, the third contribution explores the challenges in SANs through the problems of Fibre Channel over Ethernet due to buffer design issues. In this contribution, analysis, design and validation with FCoE traces and simulation is provided to calculate buffer overflow probabilities in the absence of flow control mechanisms taking into account the bursty nature of SAN traffic. Finally, the fourth and last contribution addresses the problems of energy efficiency in Plastic Optical Fibres (POF), a new kind of optical fibre more suitable for transmission in vehicles and for home networking. This contribution suggests two packet coalescing strategies to further improve the energy effiency mechanisms in POFs.El desarrollo de las Tecnologías de la Información en las últimas décadas, especialmente las últimas dos, junto con la introducción de dispositivos informáticos al mercado de masas, ha tenido como consecuencia lógica la generalización del acceso a Internet. El explosivo desarrollo del mercado de teléfonos inteligentes ha añadido un factor de ubicuidad a tal generalización, al extremo de que la interacción social, la compartición y producción de contenidos sucede a cada instante. Las redes sociales no han hecho sino incrementar tal tendencia, maximizando la difusión de contenido multimedia: imágenes, audio y vídeo, los cuales requieren gran capacidad en las redes para poder obtenerse con rapidez. Esta necesidad de ancho de banda ilimitado y velocidad en la compartición de información trae consigo retos que afectan principalmente a las Redes de Área Metropolitana (Metropolitan Area Networks, MANs) y Redes de Área Extensa (Wide Area Networks, WANs). Además, la gran difusión de las tecnologías Ethernet ha traído la posibilidad de alcanzar economías de escala bien extendiendo el alcance de Ethernet más allá de las Redes de Área Local (Local Area Networks, LANs) al entorno de las MAN y las WAN o incluso integrándolas con Redes de Almacenamiento (Storage Area Networks, SANs). Finalmente, esta generalización de las tecnologías de la comunicación en la vida cotidiana tiene también como consecuencia un importante aumento en el consumo de energía. Por tanto, desarrollar estrategias de transmisión en red eficientes energéticamente es clave para asegurar la escalabilidad de Internet. En esta tesis, las principales tecnologías de todos los campos mencionados arriba serán estudiadas, sus más importantes retos identificados y se sugieren varias contribuciones más allá del actual estado del arte para mejorar las actuales MANs y WANs. En la primera contribución de esta tesis, se explora la integración entre Metro Ethernet y anillos ópticos transparentes por Multiplexión en Longitud de Onda (Wavelength Division Multiplex, WDM) mediante la proposición de una arquitectura de adaptación para permitir la difusión y multidifusión eficiente. La segunda contribución explora la fusión entre las arquitecturas transparentes WDM y arquitecturas por Accesso Dividido Múltiple por Códigos Ópticos (OCDMA) para simplificar el acceso en una red en anillo. En lo referente a las SANs, la tercera contribución explora los retos en SANs a través de los problemas de Fibre Channel sobre Ethernet debido a los problemas en el diseño de búferes. En esta contribución, se provee un análisis, diseño y validación con trazas FCoE para calcular las probabilidades de desbordamiento de buffer en ausencia de mecanismos de control de flujo teniendo en cuenta la naturaleza rafagosa del tráfico de SAN. Finalmente, la cuarta y última contribución aborda los problemas de eficiencia energética en Fibras Ópticas Plásticas (POF), una nueva variedad de fibra óptica más adecuada para la transmisión en vehículos y para entornos de red caseros. Esta contribución sugiere dos estrategias de agrupamiento de paquetes para mejorar los mecanismos de eficiencia energética en POFs.Programa Oficial de Posgrado en Ingeniería TelemáticaPresidente: Luca Valcarenghi.- Secretario: Ignacio Soto Campos.- Vocal: Bas Huiszoo

    Integrated System Architectures for High-Performance Internet Servers

    Full text link
    Ph.D.Computer Science and EngineeringUniversity of Michiganhttp://deepblue.lib.umich.edu/bitstream/2027.42/90845/1/binkert-thesis.pd
    corecore