547 research outputs found

    Risk Assessment of Ocular Hypertension and the Use of Medication

    Get PDF
    Ocular hypertension (OHT) is the only known modifiable risk factor of glaucoma development. Intraocular pressure (IOP)-lowering therapy reduces the risk of glaucoma development. The 5-year risk of glaucoma conversion is <10% for untreated OHT patients. Cost-effectiveness analyses suggested that it is not cost-effective to treat all patients with OHT. Treatment should be targeted towards the higher-risk group—namely, patients with older age, a higher level of IOP, a thinner central corneal thickness (CCT), a larger vertical cup-to-disc ratio (VCDR) and a smaller pattern standard deviation (PSD) value on visual field (VF) test. These risk factors were established by the Ocular Hypertension Treatment Study (OHTS) and the European Glaucoma Prevention Study (EGPS). However, there is significant variability in the measurement of the currently known risk factors, especially if the assessment is taken from a longitudinal perspective. This can lead to overtreatment or under-treatment: the former exposing the patient to unnecessary side effects of IOP-lowering eye drops and the latter putting the patient at risk of developing glaucoma. The advancement of new VF algorithm and ocular imaging can lead to the identification of new approaches to risk stratification and, thus, more specific treatment for OHT patients

    Fundamental principles of an effective diabetic retinopathy screening program

    Get PDF
    Background: Diabetic retinopathy (DR) is the leading cause of blindness among working-age adults worldwide. Early detection and treatment are necessary to forestall vision loss from DR. Methods: A working group of ophthalmic and diabetes experts was established to develop a consensus on the key principles of an effective DR screening program. Recommendations are based on analysis of a structured literature review. Results: The recommendations for implementing an effective DR screening program are: (1) Examination methods must be suitable for the screening region, and DR classification/grading systems must be systematic and uniformly applied. Two-field retinal imaging is sufficient for DR screening and is preferable to seven-field imaging, and referable DR should be well defined and reliably identifiable by qualified screening staff; (2) in many countries/regions, screening can and should take place outside the ophthalmology clinic; (3) screening staff should be accredited and show evidence of ongoing training; (4) screening programs should adhere to relevant national quality assurance standards; (5) studies that use uniform definitions of risk to determine optimum risk-based screening intervals are required; (6) technology infrastructure should be in place to ensure that high-quality images can be stored securely to protect patient information; (7) although screening for diabetic macular edema (DME) in conjunction with DR evaluations may have merit, there is currently insufficient evidence to support implementation of programs solely for DME screening. Conclusion: Use of these recommendations may yield more effective DR screening programs that reduce the risk of vision loss worldwide

    Assessing structure and fucntion in glaucoma

    Get PDF

    Implantation of 3D-Printed Patient-Specific Aneurysm Models into Cadaveric Specimens: A New Training Paradigm to Allow for Improvements in Cerebrovascular Surgery and Research.

    Get PDF
    AimTo evaluate the feasibility of implanting 3D-printed brain aneurysm model in human cadavers and to assess their utility in neurosurgical research, complex case management/planning, and operative training.MethodsTwo 3D-printed aneurysm models, basilar apex and middle cerebral artery, were generated and implanted in four cadaveric specimens. The aneurysms were implanted at the same anatomical region as the modeled patient. Pterional and orbitozygomatic approaches were done on each specimen. The aneurysm implant, manipulation capabilities, and surgical clipping were evaluated.ResultsThe 3D aneurysm models were successfully implanted to the cadaveric specimens' arterial circulation in all cases. The features of the neck in terms of flexibility and its relationship with other arterial branches allowed for the practice of surgical maneuvering characteristic to aneurysm clipping. Furthermore, the relationship of the aneurysm dome with the surrounding structures allowed for better understanding of the aneurysmal local mass effect. Noticeably, all of these observations were done in a realistic environment provided by our customized embalming model for neurosurgical simulation.Conclusion3D aneurysms models implanted in cadaveric specimens may represent an untapped training method for replicating clip technique; for practicing certain approaches to aneurysms specific to a particular patient; and for improving neurosurgical research
    • …
    corecore