545 research outputs found

    An evaluative baseline for geo-semantic relatedness and similarity

    Get PDF
    In geographic information science and semantics, the computation of semantic similarity is widely recognised as key to supporting a vast number of tasks in information integration and retrieval. By contrast, the role of geo-semantic relatedness has been largely ignored. In natural language processing, semantic relatedness is often confused with the more specific semantic similarity. In this article, we discuss a notion of geo-semantic relatedness based on Lehrer’s semantic fields, and we compare it with geo-semantic similarity. We then describe and validate the Geo Relatedness and Similarity Dataset (GeReSiD), a new open dataset designed to evaluate computational measures of geo-semantic relatedness and similarity. This dataset is larger than existing datasets of this kind, and includes 97 geographic terms combined into 50 term pairs rated by 203 human subjects. GeReSiD is available online and can be used as an evaluation baseline to determine empirically to what degree a given computational model approximates geo-semantic relatedness and similarity

    Enabling folksonomies for knowledge extraction: A semantic grounding approach

    Get PDF
    Folksonomies emerge as the result of the free tagging activity of a large number of users over a variety of resources. They can be considered as valuable sources from which it is possible to obtain emerging vocabularies that can be leveraged in knowledge extraction tasks. However, when it comes to understanding the meaning of tags in folksonomies, several problems mainly related to the appearance of synonymous and ambiguous tags arise, specifically in the context of multilinguality. The authors aim to turn folksonomies into knowledge structures where tag meanings are identified, and relations between them are asserted. For such purpose, they use DBpedia as a general knowledge base from which they leverage its multilingual capabilities

    Automatically acquiring a semantic network of related concepts

    Get PDF
    ABSTRACT We describe the automatic construction of a semantic network 1 , in which over 3000 of the most frequently occurring monosemous nouns 2 in Wikipedia (each appearing between 1,500 and 100,000 times) are linked to their semantically related concepts in the WordNet noun ontology. Relatedness between nouns is discovered automatically from cooccurrence in Wikipedia texts using an information theoretic inspired measure. Our algorithm then capitalizes on salient sense clustering among related nouns to automatically disambiguate them to their appropriate senses (i.e., concepts). Through the act of disambiguation, we begin to accumulate relatedness data for concepts denoted by polysemous nouns, as well. The resultant concept-to-concept associations, covering 17,543 nouns, and 27,312 distinct senses among them, constitute a large-scale semantic network of related concepts that can be conceived of as augmenting the WordNet noun ontology with related-to links

    Automatically Acquiring A Semantic Network Of Related Concepts

    Get PDF
    We describe the automatic acquisition of a semantic network in which over 7,500 of the most frequently occurring nouns in the English language are linked to their semantically related concepts in the WordNet noun ontology. Relatedness between nouns is discovered automatically from lexical co-occurrence in Wikipedia texts using a novel adaptation of an information theoretic inspired measure. Our algorithm then capitalizes on salient sense clustering among these semantic associates to automatically disambiguate them to their corresponding WordNet noun senses (i.e., concepts). The resultant concept-to-concept associations, stemming from 7,593 target nouns, with 17,104 distinct senses among them, constitute a large-scale semantic network with 208,832 undirected edges between related concepts. Our work can thus be conceived of as augmenting the WordNet noun ontology with RelatedTo links. The network, which we refer to as the Szumlanski-Gomez Network (SGN), has been subjected to a variety of evaluative measures, including manual inspection by human judges and quantitative comparison to gold standard data for semantic relatedness measurements. We have also evaluated the network’s performance in an applied setting on a word sense disambiguation (WSD) task in which the network served as a knowledge source for established graph-based spreading activation algorithms, and have shown: a) the network is competitive with WordNet when used as a stand-alone knowledge source for WSD, b) combining our network with WordNet achieves disambiguation results that exceed the performance of either resource individually, and c) our network outperforms a similar resource, WordNet++ (Ponzetto & Navigli, 2010), that has been automatically derived from annotations in the Wikipedia corpus. iii Finally, we present a study on human perceptions of relatedness. In our study, we elicited quantitative evaluations of semantic relatedness from human subjects using a variation of the classical methodology that Rubenstein and Goodenough (1965) employed to investigate human perceptions of semantic similarity. Judgments from individual subjects in our study exhibit high average correlation to the elicited relatedness means using leave-one-out sampling (r = 0.77, σ = 0.09, N = 73), although not as high as average human correlation in previous studies of similarity judgments, for which Resnik (1995) established an upper bound of r = 0.90 (σ = 0.07, N = 10). These results suggest that human perceptions of relatedness are less strictly constrained than evaluations of similarity, and establish a clearer expectation for what constitutes human-like performance by a computational measure of semantic relatedness. We also contrast the performance of a variety of similarity and relatedness measures on our dataset to their performance on similarity norms and introduce our own dataset as a supplementary evaluative standard for relatedness measures

    Entity Linking to Wikipedia : Grounding entity mentions in natural language text using thematic context distance and collective search

    Get PDF
    This thesis proposes new methods for entity linking in natural language text that assigns entity mentions in unstructured natural language text to the semi-structured encyclopedia Wikipedia. Doing so, entity linking grounds a mention to an encyclopedic entry in Wikipedia and embeds it into this Linked-Open-Data hub. This enables a higher level view on single documents, provides hints for further reading and may be used to add details from other sources. Furthermore, enriching text documents with such links simultaneously resolves the ambiguity of entity names. This ambiguity is an unsolved challenge for many text mining applications: one entity may be designated by a multitude of names and every mention may denote a multitude of entities. Resolving the ambiguity of entity names is thus a crucial step for entity based retrieval, an open problem for most information retrieval and extraction tasks. For instance, search engines relying on heuristic string matches often retrieve irrelevant results as they can not satisfyingly resolve ambiguity. Moreover, there is a huge number of entity mentions that can not be linked to Wikipedia since albeit of its size, Wikipedia has a restricted coverage. Earlier and current work often ignored this and consequently all mentions of uncovered entities. Other approaches handle only entity mentions of specific types or are focussed on English as target language. Apart from such restrictions, no method achieves perfect linking performance. These are the tasks approached in this thesis. We introduce new methods for candidate entity retrieval and candidate entity consolidation, the key components to recall and precision, exploiting both the vast amount of structured and unstructured information stored in Wikipedia. First, we propose a new contextual similarity measure based on latent topic distributions inferred from unstructured natural language text. We show that this thematic distance between mention and candidate entity contexts yields a lower linking error rate than purely word based distances. Being language independent, this method enables high performance entity linking in previously neglected languages such as German and French. This approach is especially suitable, albeit not restricted to link person names, the class of mentions with highest ambiguity. We next propose a new candidate retrieval method to enable successful entity linking also for other entities that are not referenced canonically or exhibit the thematic coherence of persons. We introduce collective search that uses the structured information encoded in Wikipedia’s hyperlink graph to arrive at sets of strongly related candidate entities. This enables us to better handle synonymy, one of the hardest problems in entity linking and not thoroughly treated in previous work. We emphasize on general applicability and evaluate this method on a broad collection of benchmark corpora both in a supervised as well as in an unsupervised setting. We show that candidate enhancement through collective search increases linking performance on nearly all of these corpora and that our method is the most stable compared to other state-of-the-art approaches. Presenting the first unification of diverse performance measures, we also make a step forward to the comparability of entity linking methods. In conclusion, we provide state-of-the-art entity linking methods for nearly all of the current use cases. When it comes to fine-tuning, we note that entity linking has subjective aspects and adaptions may be necessary depending on the task at hand

    Empirical studies on word representations

    Get PDF
    One of the most fundamental tasks in natural language processing is representing words with mathematical objects (such as vectors). The word representations, which are most often estimated from data, allow capturing the meaning of words. They enable comparing words according to their semantic similarity, and have been shown to work extremely well when included in complex real-world applications. A large part of our work deals with ways of estimating word representations directly from large quantities of text. Our methods exploit the idea that words which occur in similar contexts have a similar meaning. How we define the context is an important focus of our thesis. The context can consist of a number of words to the left and to the right of the word in question, but, as we show, obtaining context words via syntactic links (such as the link between the verb and its subject) often works better. We furthermore investigate word representations that accurately capture multiple meanings of a single word. We show that translation of a word in context contains information that can be used to disambiguate the meaning of that word
    corecore