15 research outputs found

    Evaluating openEHR for storing computable representations of electronic health record phenotyping algorithms

    Get PDF
    Electronic Health Records (EHR) are data generated during routine clinical care. EHR offer researchers unprecedented phenotypic breadth and depth and have the potential to accelerate the pace of precision medicine at scale. A main EHR use-case is creating phenotyping algorithms to define disease status, onset and severity. Currently, no common machine-readable standard exists for defining phenotyping algorithms which often are stored in human-readable formats. As a result, the translation of algorithms to implementation code is challenging and sharing across the scientific community is problematic. In this paper, we evaluate openEHR, a formal EHR data specification, for computable representations of EHR phenotyping algorithms.Comment: 30th IEEE International Symposium on Computer-Based Medical Systems - IEEE CBMS 201

    UK phenomics platform for developing and validating electronic health record phenotypes: CALIBER

    Get PDF
    Objective: Electronic health records (EHRs) are a rich source of information on human diseases, but the information is variably structured, fragmented, curated using different coding systems, and collected for purposes other than medical research. We describe an approach for developing, validating, and sharing reproducible phenotypes from national structured EHR in the United Kingdom with applications for translational research. Materials and Methods: We implemented a rule-based phenotyping framework, with up to 6 approaches of validation. We applied our framework to a sample of 15 million individuals in a national EHR data source (population-based primary care, all ages) linked to hospitalization and death records in England. Data comprised continuous measurements (for example, blood pressure; medication information; coded diagnoses, symptoms, procedures, and referrals), recorded using 5 controlled clinical terminologies: (1) read (primary care, subset of SNOMED-CT [Systematized Nomenclature of Medicine Clinical Terms]), (2) International Classification of Diseases–Ninth Revision and Tenth Revision (secondary care diagnoses and cause of mortality), (3) Office of Population Censuses and Surveys Classification of Surgical Operations and Procedures, Fourth Revision (hospital surgical procedures), and (4) DMþD prescription codes. Results: Using the CALIBER phenotyping framework, we created algorithms for 51 diseases, syndromes, biomarkers, and lifestyle risk factors and provide up to 6 validation approaches. The EHR phenotypes are curated in the open-access CALIBER Portal (https://www.caliberresearch.org/portal) and have been used by 40 national and international research groups in 60 peer-reviewed publications. Conclusions: We describe a UK EHR phenomics approach within the CALIBER EHR data platform with initial evidence of validity and use, as an important step toward international use of UK EHR data for health research

    Cohort Identification Using Semantic Web Technologies: Ontologies and Triplestores as Engines for Complex Computable Phenotyping

    Get PDF
    Electronic health record (EHR)-based computable phenotypes are algorithms used to identify individuals or populations with clinical conditions or events of interest within a clinical data repository. Due to a lack of EHR data standardization, computable phenotypes can be semantically ambiguous and difficult to share across institutions. In this research, I propose a new computable phenotyping methodological framework based on semantic web technologies, specifically ontologies, the Resource Description Framework (RDF) data format, triplestores, and Web Ontology Language (OWL) reasoning. My hypothesis is that storing and analyzing clinical data using these technologies can begin to address the critical issues of semantic ambiguity and lack of interoperability in the context of computable phenotyping. To test this hypothesis, I compared the performance of two variants of two computable phenotypes (for depression and rheumatoid arthritis, respectively). The first variant of each phenotype used a list of ICD-10-CM codes to define the condition; the second variant used ontology concepts from SNOMED and the Human Phenotype Ontology (HPO). After executing each variant of each phenotype against a clinical data repository, I compared the patients matched in each case to see where the different variants overlapped and diverged. Both the ontologies and the clinical data were stored in an RDF triplestore to allow me to assess the interoperability advantages of the RDF format for clinical data. All tested methods successfully identified cohorts in the data store, with differing rates of overlap and divergence between variants. Depending on the phenotyping use case, SNOMED and HPO’s ability to more broadly define many conditions due to complex relationships between their concepts may be seen as an advantage or a disadvantage. I also found that RDF triplestores do indeed provide interoperability advantages, despite being far less commonly used in clinical data applications than relational databases. Despite the fact that these methods and technologies are not “one-size-fits-all,” the experimental results are encouraging enough for them to (1) be put into practice in combination with existing phenotyping methods or (2) be used on their own for particularly well-suited use cases.Doctor of Philosoph

    Desiderata for the development of next-generation electronic health record phenotype libraries

    Get PDF
    Background High-quality phenotype definitions are desirable to enable the extraction of patient cohorts from large electronic health record repositories and are characterized by properties such as portability, reproducibility, and validity. Phenotype libraries, where definitions are stored, have the potential to contribute significantly to the quality of the definitions they host. In this work, we present a set of desiderata for the design of a next-generation phenotype library that is able to ensure the quality of hosted definitions by combining the functionality currently offered by disparate tooling. Methods A group of researchers examined work to date on phenotype models, implementation, and validation, as well as contemporary phenotype libraries developed as a part of their own phenomics communities. Existing phenotype frameworks were also examined. This work was translated and refined by all the authors into a set of best practices. Results We present 14 library desiderata that promote high-quality phenotype definitions, in the areas of modelling, logging, validation, and sharing and warehousing. Conclusions There are a number of choices to be made when constructing phenotype libraries. Our considerations distil the best practices in the field and include pointers towards their further development to support portable, reproducible, and clinically valid phenotype design. The provision of high-quality phenotype definitions enables electronic health record data to be more effectively used in medical domains

    Desiderata for the development of next-generation electronic health record phenotype libraries

    Get PDF
    BackgroundHigh-quality phenotype definitions are desirable to enable the extraction of patient cohorts from large electronic health record repositories and are characterized by properties such as portability, reproducibility, and validity. Phenotype libraries, where definitions are stored, have the potential to contribute significantly to the quality of the definitions they host. In this work, we present a set of desiderata for the design of a next-generation phenotype library that is able to ensure the quality of hosted definitions by combining the functionality currently offered by disparate tooling.MethodsA group of researchers examined work to date on phenotype models, implementation, and validation, as well as contemporary phenotype libraries developed as a part of their own phenomics communities. Existing phenotype frameworks were also examined. This work was translated and refined by all the authors into a set of best practices.ResultsWe present 14 library desiderata that promote high-quality phenotype definitions, in the areas of modelling, logging, validation, and sharing and warehousing.ConclusionsThere are a number of choices to be made when constructing phenotype libraries. Our considerations distil the best practices in the field and include pointers towards their further development to support portable, reproducible, and clinically valid phenotype design. The provision of high-quality phenotype definitions enables electronic health record data to be more effectively used in medical domains

    Computing Healthcare Quality Indicators Automatically: Secondary Use of Patient Data and Semantic Interoperability

    Get PDF
    Harmelen, F.A.H. van [Promotor]Keizer, N.F. de [Copromotor]Cornet, R. [Copromotor]Teije, A.C.M. [Copromotor

    Preface

    Get PDF

    Intégration de ressources en recherche translationnelle : une approche unificatrice en support des systèmes de santé "apprenants"

    Get PDF
    Learning health systems (LHS) are gradually emerging and propose a complimentary approach to translational research challenges by implementing close coupling of health care delivery, research and knowledge translation. To support coherent knowledge sharing, the system needs to rely on an integrated and efficient data integration platform. The framework and its theoretical foundations presented here aim at addressing this challenge. Data integration approaches are analysed in light of the requirements derived from LHS activities and data mediation emerges as the one most adapted for a LHS. The semantics of clinical data found in biomedical sources can only be fully derived by taking into account, not only information from the structural models (field X of table Y), but also terminological information (e.g. International Classification of Disease 10th revision) used to encode facts. The unified framework proposed here takes this into account. The platform has been implemented and tested in context of the TRANSFoRm endeavour, a European project funded by the European commission. It aims at developing a LHS including clinical activities in primary care. The mediation model developed for the TRANSFoRm project, the Clinical Data Integration Model, is presented and discussed. Results from TRANSFoRm use-cases are presented. They illustrate how a unified data sharing platform can support and enhance prospective research activities in context of a LHS. In the end, the unified mediation framework presented here allows sufficient expressiveness for the TRANSFoRm needs. It is flexible, modular and the CDIM mediation model supports the requirements of a primary care LHS.Les systèmes de santé "apprenants" (SSA) présentent une approche complémentaire et émergente aux problèmes de la recherche translationnelle en couplant de près les soins de santé, la recherche et le transfert de connaissances. Afin de permettre un flot d’informations cohérent et optimisé, le système doit se doter d’une plateforme intégrée de partage de données. Le travail présenté ici vise à proposer une approche de partage de données unifiée pour les SSA. Les grandes approches d’intégration de données sont analysées en fonction du SSA. La sémantique des informations cliniques disponibles dans les sources biomédicales est la résultante des connaissances des modèles structurelles des sources mais aussi des connaissances des modèles terminologiques utilisés pour coder l’information. Les mécanismes de la plateforme unifiée qui prennent en compte cette interdépendance sont décrits. La plateforme a été implémentée et testée dans le cadre du projet TRANSFoRm, un projet européen qui vise à développer un SSA. L’instanciation du modèle de médiation pour le projet TRANSFoRm, le Clinical Data Integration Model est analysée. Sont aussi présentés ici les résultats d’un des cas d’utilisation de TRANSFoRm pour supporter la recherche afin de donner un aperçu concret de l’impact de la plateforme sur le fonctionnement du SSA. Au final, la plateforme unifiée d’intégration proposée ici permet un niveau d’expressivité suffisant pour les besoins de TRANSFoRm. Le système est flexible et modulaire et le modèle de médiation CDIM couvre les besoins exprimés pour le support des activités d’un SSA comme TRANSFoRm

    Front-Line Physicians' Satisfaction with Information Systems in Hospitals

    Get PDF
    Day-to-day operations management in hospital units is difficult due to continuously varying situations, several actors involved and a vast number of information systems in use. The aim of this study was to describe front-line physicians' satisfaction with existing information systems needed to support the day-to-day operations management in hospitals. A cross-sectional survey was used and data chosen with stratified random sampling were collected in nine hospitals. Data were analyzed with descriptive and inferential statistical methods. The response rate was 65 % (n = 111). The physicians reported that information systems support their decision making to some extent, but they do not improve access to information nor are they tailored for physicians. The respondents also reported that they need to use several information systems to support decision making and that they would prefer one information system to access important information. Improved information access would better support physicians' decision making and has the potential to improve the quality of decisions and speed up the decision making process.Peer reviewe
    corecore