322 research outputs found

    An Artificial Neural Networks based Temperature Prediction Framework for Network-on-Chip based Multicore Platform

    Get PDF
    Continuous improvement in silicon process technologies has made possible the integration of hundreds of cores on a single chip. However, power and heat have become dominant constraints in designing these massive multicore chips causing issues with reliability, timing variations and reduced lifetime of the chips. Dynamic Thermal Management (DTM) is a solution to avoid high temperatures on the die. Typical DTM schemes only address core level thermal issues. However, the Network-on-chip (NoC) paradigm, which has emerged as an enabling methodology for integrating hundreds to thousands of cores on the same die can contribute significantly to the thermal issues. Moreover, the typical DTM is triggered reactively based on temperature measurements from on-chip thermal sensor requiring long reaction times whereas predictive DTM method estimates future temperature in advance, eliminating the chance of temperature overshoot. Artificial Neural Networks (ANNs) have been used in various domains for modeling and prediction with high accuracy due to its ability to learn and adapt. This thesis concentrates on designing an ANN prediction engine to predict the thermal profile of the cores and Network-on-Chip elements of the chip. This thermal profile of the chip is then used by the predictive DTM that combines both core level and network level DTM techniques. On-chip wireless interconnect which is recently envisioned to enable energy-efficient data exchange between cores in a multicore environment, will be used to provide a broadcast-capable medium to efficiently distribute thermal control messages to trigger and manage the DTM schemes

    Artificial Neural Network Based Prediction Mechanism for Wireless Network on Chips Medium Access Control

    Get PDF
    As per Moore’s law, continuous improvement over silicon process technologies has made the integration of hundreds of cores on to a single chip possible. This has resulted in the paradigm shift towards multicore and many-core chips where, hundreds of cores can be integrated on the same die and interconnected using an on-chip packet-switched network called a Network-on-Chip (NoC). Various tasks running on different cores generate different rates of communication between pairs of cores. This lead to the increase in spatial and temporal variation in the workloads, which impact the long distance data communication over multi-hop wire line paths in conventional NoCs. Among different alternatives, due to the CMOS compatibility and energy-efficiency, low-latency wireless interconnects operating in the millimeter wave (mm-wave) band is nearer term solution to this multi-hop communication problem in traditional NoCs. This has led to the recent exploration of millimeter-wave (mm-wave) wireless technologies in wireless NoC architectures (WiNoC). In a WiNoC, the mm-wave wireless interconnect is realized by equipping some NoC switches with an wireless interface (WI) that contains an antenna and transceiver circuit tuned to operate in the mm-wave frequency. To enable collision free and energy-efficient communication among the WIs, the WIs is also equipped with a medium access control mechanism (MAC) unit. Due to the simplicity and low-overhead implementation, a token passing based MAC mechanism to enable Time Division Multiple Access (TDMA) has been adopted in many WiNoC architectures. However, such simple MAC mechanism is agnostic of the demand of the WIs. Based on the tasks mapped on a multicore system the demand through the WIs can vary both spatially and temporally. Hence, if the MAC is agnostic of such demand variation, energy is wasted when no flit is transferred through the wireless channel. To efficiently utilize the wireless channel, MAC mechanisms that can dynamically allocate token possession period of the WIs have been explored in recent time for WiNoCs. In the dynamic MAC mechanism, a history-based prediction is used to predict the bandwidth demand of the WIs to adjust the token possession period with respect to the traffic variation. However, such simple history based predictors are not accurate and limits the performance gain due to the dynamic MACs in a WiNoC. In this work, we investigate the design of an artificial neural network (ANN) based prediction methodology to accurately predict the bandwidth demand of each WI. Through system level simulation, we show that the dynamic MAC mechanisms enabled with the ANN based prediction mechanism can significantly improve the performance of a WiNoC in terms of peak bandwidth, packet energy and latency compared to the state-of-the-art dynamic MAC mechanisms

    High-Density Solid-State Memory Devices and Technologies

    Get PDF
    This Special Issue aims to examine high-density solid-state memory devices and technologies from various standpoints in an attempt to foster their continuous success in the future. Considering that broadening of the range of applications will likely offer different types of solid-state memories their chance in the spotlight, the Special Issue is not focused on a specific storage solution but rather embraces all the most relevant solid-state memory devices and technologies currently on stage. Even the subjects dealt with in this Special Issue are widespread, ranging from process and design issues/innovations to the experimental and theoretical analysis of the operation and from the performance and reliability of memory devices and arrays to the exploitation of solid-state memories to pursue new computing paradigms

    Energy efficient hybrid computing systems using spin devices

    Get PDF
    Emerging spin-devices like magnetic tunnel junctions (MTJ\u27s), spin-valves and domain wall magnets (DWM) have opened new avenues for spin-based logic design. This work explored potential computing applications which can exploit such devices for higher energy-efficiency and performance. The proposed applications involve hybrid design schemes, where charge-based devices supplement the spin-devices, to gain large benefits at the system level. As an example, lateral spin valves (LSV) involve switching of nanomagnets using spin-polarized current injection through a metallic channel such as Cu. Such spin-torque based devices possess several interesting properties that can be exploited for ultra-low power computation. Analog characteristic of spin current facilitate non-Boolean computation like majority evaluation that can be used to model a neuron. The magneto-metallic neurons can operate at ultra-low terminal voltage of ∼20mV, thereby resulting in small computation power. Moreover, since nano-magnets inherently act as memory elements, these devices can facilitate integration of logic and memory in interesting ways. The spin based neurons can be integrated with CMOS and other emerging devices leading to different classes of neuromorphic/non-Von-Neumann architectures. The spin-based designs involve `mixed-mode\u27 processing and hence can provide very compact and ultra-low energy solutions for complex computation blocks, both digital as well as analog. Such low-power, hybrid designs can be suitable for various data processing applications like cognitive computing, associative memory, and currentmode on-chip global interconnects. Simulation results for these applications based on device-circuit co-simulation framework predict more than ∼100x improvement in computation energy as compared to state of the art CMOS design, for optimal spin-device parameters
    • …
    corecore