52 research outputs found

    Ordinal and nominal classication of wind speed from synoptic pressure patterns

    Get PDF
    Wind speed reconstruction is a challenging problem in areas (mainly wind farms) where there are not direct wind measures available. Di erent approaches have been applied to this reconstruction, such as measure-correlatepredict algorithms, approaches based on physical models such as reanalysis methods, or more recently, indirect measures such as pressure, and its relation to wind speed. This paper adopts the latter method, and deals with wind speed estimation in wind farms from pressure measures, but including different novelties in the problem treatment. Existing synoptic pressure-based indirect approaches for wind speed estimation are based on considering the wind speed as a continuous target variable, estimating then the corresponding wind series of continuous values. However, the exact wind speed is not always needed by wind farms managers, and a general idea of the level of speed is, in the majority of cases, enough to set functional operations for the farm (such as wind turbines stop, for example). Moreover, the accuracy of the models obtained is usually improved for the classi cation task, given that the problem is simpli ed. Thus, this paper tackles the problem of wind speed prediction from synoptic pressure patterns by considering wind speed as a discrete variable and, consequently, wind speed prediction as a classi cation problem, with four wind level categories: low, moderate, high or very high. Moreover, taking into account that these four di erent classes are associated to four values in an ordinal scale, the problem can be considered as an ordinal regression problem. The performance of several ordinal and nominal classi- ers and the improvement achieved by considering the ordering information are evaluated. The results obtained in this paper present the Support Vector Machine as the best tested classi er for this task. In addition, the use of the intrinsic ordering information of the problem is shown to signi cantly improve ranks with respect to nominal classi cation, although di erences in accuracy are smal

    A Review of Classification Problems and Algorithms in Renewable Energy Applications

    Get PDF
    Classification problems and their corresponding solving approaches constitute one of the fields of machine learning. The application of classification schemes in Renewable Energy (RE) has gained significant attention in the last few years, contributing to the deployment, management and optimization of RE systems. The main objective of this paper is to review the most important classification algorithms applied to RE problems, including both classical and novel algorithms. The paper also provides a comprehensive literature review and discussion on different classification techniques in specific RE problems, including wind speed/power prediction, fault diagnosis in RE systems, power quality disturbance classification and other applications in alternative RE systems. In this way, the paper describes classification techniques and metrics applied to RE problems, thus being useful both for researchers dealing with this kind of problem and for practitioners of the field

    Ordinal regression methods: survey and experimental study

    Get PDF
    Abstract—Ordinal regression problems are those machine learning problems where the objective is to classify patterns using a categorical scale which shows a natural order between the labels. Many real-world applications present this labelling structure and that has increased the number of methods and algorithms developed over the last years in this field. Although ordinal regression can be faced using standard nominal classification techniques, there are several algorithms which can specifically benefit from the ordering information. Therefore, this paper is aimed at reviewing the state of the art on these techniques and proposing a taxonomy based on how the models are constructed to take the order into account. Furthermore, a thorough experimental study is proposed to check if the use of the order information improves the performance of the models obtained, considering some of the approaches within the taxonomy. The results confirm that ordering information benefits ordinal models improving their accuracy and the closeness of the predictions to actual targets in the ordinal scal

    Statistical Postprocessing of Numerical Weather Prediction Forecasts using Machine Learning

    Get PDF
    Nowadays, weather prediction is based on numerical models of the physics of the atmosphere. These models are usually run multiple times based on randomly perturbed initial conditions. The resulting so-called ensemble forecasts represent distinct scenarios of the future and provide probabilistic projections. However, these forecasts are subject to systematic errors such as biases and they are often unable to quantify the forecast uncertainty adequately. Statistical postprocessing methods aim to exploit structure in past pairs of forecasts and observations to correct these errors when applied to future forecasts. In this thesis, we develop statistical postprocessing methods based on the central paradigm of probabilistic forecasting, that is, to maximize the sharpness subject to calibration. A wide range of statistical and machine learning methods is presented with a focus on novel neural network-based postprocessing techniques. In particular, we analyze the aggregation of distributional forecasts from neural network ensembles and develop statistical postprocessing methods for ensemble forecasts of wind gusts, with a focus on European winter storms

    Computational Intelligence for classification and forecasting of solar photovoltaic energy production and energy consumption in buildings

    Get PDF
    This thesis presents a few novel applications of Computational Intelligence techniques in the field of energy-related problems. More in detail, we refer to the assessment of the energy produced by a solar photovoltaic installation and to the evaluation of building’s energy consumptions. In fact, recently, thanks also to the growing evolution of technologies, the energy sector has drawn the attention of the research community in proposing useful tools to deal with issues of energy efficiency in buildings and with solar energy production management. Thus, we will address two kinds of problem. The first problem is related to the efficient management of solar photovoltaic energy installations, e.g., for efficiently monitoring the performance as well as for finding faults, or for planning the energy distribution in the electrical grid. This problem was faced with two different approaches: a forecasting approach and a fuzzy classification approach for energy production estimation, starting from some knowledge about environmental variables. The forecasting system developed is able to reproduce the instantaneous curve of daily energy produced by the solar panels of the installation, with a forecasting horizon of one day. It combines neural networks and time series analysis models. The fuzzy classification system, rather, extracts some linguistic knowledge about the amount of energy produced by the installation, exploiting an optimal fuzzy rule base and genetic algorithms. The developed model is the result of a novel hierarchical methodology for building fuzzy systems, which may be applied in several areas. The second problem is related to energy efficiency in buildings, for cost reduction and load scheduling purposes, and was tackled by proposing a forecasting system of energy consumption in office buildings. The proposed system exploits a neural network to estimate the energy consumption due to lighting on a time interval of a few hours, starting from considerations on available natural daylight

    Probabilistic and artificial intelligence modelling of drought and agricultural crop yield in Pakistan

    Get PDF
    Pakistan is a drought-prone, agricultural nation with hydro-meteorological imbalances that increase the scarcity of water resources, thus, constraining water availability and leading major risks to the agricultural productivity sector and food security. Rainfall and drought are imperative matters of consideration, both for hydrological and agricultural applications. The aim of this doctoral thesis is to advance new knowledge in designing hybridized probabilistic and artificial intelligence forecasts models for rainfall, drought and crop yield within the agricultural hubs in Pakistan. The choice of these study regions is a strategic decision, to focus on precision agriculture given the importance of rainfall and drought events on agricultural crops in socioeconomic activities of Pakistan. The outcomes of this PhD contribute to efficient modelling of seasonal rainfall, drought and crop yield to assist farmers and other stakeholders to promote more strategic decisions for better management of climate risk for agriculturalreliant nations

    Fuzzy Logic

    Get PDF
    The capability of Fuzzy Logic in the development of emerging technologies is introduced in this book. The book consists of sixteen chapters showing various applications in the field of Bioinformatics, Health, Security, Communications, Transportations, Financial Management, Energy and Environment Systems. This book is a major reference source for all those concerned with applied intelligent systems. The intended readers are researchers, engineers, medical practitioners, and graduate students interested in fuzzy logic systems

    3D Remote Sensing Applications in Forest Ecology: Composition, Structure and Function

    Get PDF
    Dear Colleagues, The composition, structure and function of forest ecosystems are the key features characterizing their ecological properties, and can thus be crucially shaped and changed by various biotic and abiotic factors on multiple spatial scales. The magnitude and extent of these changes in recent decades calls for enhanced mitigation and adaption measures. Remote sensing data and methods are the main complementary sources of up-to-date synoptic and objective information of forest ecology. Due to the inherent 3D nature of forest ecosystems, the analysis of 3D sources of remote sensing data is considered to be most appropriate for recreating the forest’s compositional, structural and functional dynamics. In this Special Issue of Forests, we published a set of state-of-the-art scientific works including experimental studies, methodological developments and model validations, all dealing with the general topic of 3D remote sensing-assisted applications in forest ecology. We showed applications in forest ecology from a broad collection of method and sensor combinations, including fusion schemes. All in all, the studies and their focuses are as broad as a forest’s ecology or the field of remote sensing and, thus, reflect the very diverse usages and directions toward which future research and practice will be directed

    Forest fire danger extremes in Europe under climate change: variability and uncertainty

    Get PDF
    Forests cover over a third of the total land area of Europe. In recent years, large forest fires have repeatedly affected Europe, in particular the Mediterranean countries. Fire danger is influenced by weather in the short term, and by climate when considering longer time intervals. In this work, the emphasis is on the direct influence on fire danger of weather and climate. For climate analysis at the continental scale, a daily high-emission scenario (RCP 8.5) was considered up to the end of the century, and a mitigation scenario that limits global warming to 2 °C was also assessed. To estimate fire danger, the Canadian Fire Weather Index (FWI) system was used. FWI provides a uniform numerical rating of relative fire potential, by combining the information from daily local temperature, wind speed, relative humidity, and precipitation values. The FWI is standardised to consider a reference fuel behaviour irrespective of other factors. It is thus well suited to support harmonised comparisons, to highlight the role of the varying climate in the component of fire danger that is driven by weather. RESULTS. Around the Mediterranean region, climate change will reduce fuel moisture levels from present values, increasing the weather-driven danger of forest fires. Furthermore, areas exhibiting low moisture will extend further northwards from the Mediterranean, and the current area of high fuel moisture surrounding the Alps will decrease in size. Projected declines in moisture for Mediterranean countries are smaller with mitigation that limits global warming to 2 °C, but a worsening is still predicted compared with present. There is a clear north-south pattern of deep fuel moisture variability across Europe in both climate change scenarios. Areas at moderate danger from forest fires are pushed north to central Europe by climate change. Relatively little change is expected in weather-driven fire danger across northern Europe. However, mountain systems show a fast pace of change. ADAPTATION OPTIONS. Key strategies to be considered may include vegetation management to reduce the likelihood of severe fires, as well as fuel treatments to mitigate fire hazard in dry forests. These measures should be adapted to the different forest ecosystems and conditions. Limited, preliminary knowledge covers specific but essential aspects. Evidence suggests that some areas protected for biodiversity conservation may be affected less by forest fires than unprotected areas, despite containing more combustible material. Specific typologies of old-growth forests may be associated with lower fire severity than densely stocked even-aged young stands, and some tree plantations might be more subject to severe fire compared with multi-aged forests. Particular ecosystems and vegetation associations may be better adapted for post-fire recovery, as long as the interval between fires is not too short. Therefore, deepening the understanding of resistance, resilience and habitat suitability of mixtures of forest tree species is recommended. Human activity (accidental, negligent or deliberate) is one of the most common causes of fire. For this reason, the main causes of fire should be minimized, which includes analysing the social and economic factors that lead people to start fires, increasing awareness of the danger, encouraging good behaviour and sanctioning offenders. LIMITATIONS. Bias correction of climate projections is known to be a potential noticeable source of uncertainty in the predicted bioclimatic anomalies to which vegetation is sensitive. In particular, the analysis of fire danger under climate change scenarios may be critically affected by climatic modelling uncertainty. This work did not explicitly model adaptation scenarios for forest fire danger because ecosystem resilience to fire is uneven and its assessment relies on factors that are difficult to model numerically. Furthermore, a component of the proposed climate-based characterization of future wildfire potential impacts may be linked to the current distribution of population, land cover and use in Europe. The future distribution of these factors is likely to be different from now.JRC.E.1-Disaster Risk Managemen
    • …
    corecore