208 research outputs found

    A Computational Lexicon and Representational Model for Arabic Multiword Expressions

    Get PDF
    The phenomenon of multiword expressions (MWEs) is increasingly recognised as a serious and challenging issue that has attracted the attention of researchers in various language-related disciplines. Research in these many areas has emphasised the primary role of MWEs in the process of analysing and understanding language, particularly in the computational treatment of natural languages. Ignoring MWE knowledge in any NLP system reduces the possibility of achieving high precision outputs. However, despite the enormous wealth of MWE research and language resources available for English and some other languages, research on Arabic MWEs (AMWEs) still faces multiple challenges, particularly in key computational tasks such as extraction, identification, evaluation, language resource building, and lexical representations. This research aims to remedy this deficiency by extending knowledge of AMWEs and making noteworthy contributions to the existing literature in three related research areas on the way towards building a computational lexicon of AMWEs. First, this study develops a general understanding of AMWEs by establishing a detailed conceptual framework that includes a description of an adopted AMWE concept and its distinctive properties at multiple linguistic levels. Second, in the use of AMWE extraction and discovery tasks, the study employs a hybrid approach that combines knowledge-based and data-driven computational methods for discovering multiple types of AMWEs. Third, this thesis presents a representative system for AMWEs which consists of multilayer encoding of extensive linguistic descriptions. This project also paves the way for further in-depth AMWE-aware studies in NLP and linguistics to gain new insights into this complicated phenomenon in standard Arabic. The implications of this research are related to the vital role of the AMWE lexicon, as a new lexical resource, in the improvement of various ANLP tasks and the potential opportunities this lexicon provides for linguists to analyse and explore AMWE phenomena

    many faces, many places (Term21)

    Get PDF
    UIDB/03213/2020 UIDP/03213/2020Proceedings of the LREC 2022 Workshop Language Resources and Evaluation Conferencepublishersversionpublishe

    Intelligent Systems

    Get PDF
    This book is dedicated to intelligent systems of broad-spectrum application, such as personal and social biosafety or use of intelligent sensory micro-nanosystems such as "e-nose", "e-tongue" and "e-eye". In addition to that, effective acquiring information, knowledge management and improved knowledge transfer in any media, as well as modeling its information content using meta-and hyper heuristics and semantic reasoning all benefit from the systems covered in this book. Intelligent systems can also be applied in education and generating the intelligent distributed eLearning architecture, as well as in a large number of technical fields, such as industrial design, manufacturing and utilization, e.g., in precision agriculture, cartography, electric power distribution systems, intelligent building management systems, drilling operations etc. Furthermore, decision making using fuzzy logic models, computational recognition of comprehension uncertainty and the joint synthesis of goals and means of intelligent behavior biosystems, as well as diagnostic and human support in the healthcare environment have also been made easier

    Ensemble Morphosyntactic Analyser for Classical Arabic

    Get PDF
    Classical Arabic (CA) is an influential language for Muslim lives around the world. It is the language of two sources of Islamic laws: the Quran and the Sunnah, the collection of traditions and sayings attributed to the prophet Mohammed. However, classical Arabic in general, and the Sunnah, in particular, is underexplored and under-resourced in the field of computational linguistics. This study examines the possible directions for adapting existing tools, specifically morphological analysers, designed for modern standard Arabic (MSA) to classical Arabic. Morphological analysers of CA are limited, as well as the data for evaluating them. In this study, we adapt existing analysers and create a validation data-set from the Sunnah books. Inspired by the advances in deep learning and the promising results of ensemble methods, we developed a systematic method for transferring morphological analysis that is capable of handling different labelling systems and various sequence lengths. In this study, we handpicked the best four open access MSA morphological analysers. Data generated from these analysers are evaluated before and after adaptation through the existing Quranic Corpus and the Sunnah Arabic Corpus. The findings are as follows: first, it is feasible to analyse under-resourced languages using existing comparable language resources given a small sufficient set of annotated text. Second, analysers typically generate different errors and this could be exploited. Third, an explicit alignment of sequences and the mapping of labels is not necessary to achieve comparable accuracies given a sufficient size of training dataset. Adapting existing tools is easier than creating tools from scratch. The resulting quality is dependent on training data size and number and quality of input taggers. Pipeline architecture performs less well than the End-to-End neural network architecture due to error propagation and limitation on the output format. A valuable tool and data for annotating classical Arabic is made freely available
    corecore