109 research outputs found

    Multilayer Networks

    Full text link
    In most natural and engineered systems, a set of entities interact with each other in complicated patterns that can encompass multiple types of relationships, change in time, and include other types of complications. Such systems include multiple subsystems and layers of connectivity, and it is important to take such "multilayer" features into account to try to improve our understanding of complex systems. Consequently, it is necessary to generalize "traditional" network theory by developing (and validating) a framework and associated tools to study multilayer systems in a comprehensive fashion. The origins of such efforts date back several decades and arose in multiple disciplines, and now the study of multilayer networks has become one of the most important directions in network science. In this paper, we discuss the history of multilayer networks (and related concepts) and review the exploding body of work on such networks. To unify the disparate terminology in the large body of recent work, we discuss a general framework for multilayer networks, construct a dictionary of terminology to relate the numerous existing concepts to each other, and provide a thorough discussion that compares, contrasts, and translates between related notions such as multilayer networks, multiplex networks, interdependent networks, networks of networks, and many others. We also survey and discuss existing data sets that can be represented as multilayer networks. We review attempts to generalize single-layer-network diagnostics to multilayer networks. We also discuss the rapidly expanding research on multilayer-network models and notions like community structure, connected components, tensor decompositions, and various types of dynamical processes on multilayer networks. We conclude with a summary and an outlook.Comment: Working paper; 59 pages, 8 figure

    An analytic strategy for data processing of multimode networks

    Get PDF
    Complex network data structures are considered to capture the richness of social phenomena and real-life data settings. Multipartite networks are an example in which various scenarios are represented by different types of relations, actors, or modes. Within this context, the present contribution aims at discussing an analytic strategy for simplifying multipartite networks in which different sets of nodes are linked. By considering the connection of multimode networks and hypergraphs as theoretical concepts, a three-step procedure is introduced to simplify, normalize, and filter network data structures. Thus, a model-based approach is introduced for derived bipartite weighted networks in order to extract statistically significant links. The usefulness of the strategy is demonstrated in handling two application fields, that is, intranational student mobility in higher education and research collaboration in European framework programs. Finally, both examples are explored using community detection algorithms to determine the presence of groups by mixing up different modes

    Link Prediction in Complex Networks: A Survey

    Full text link
    Link prediction in complex networks has attracted increasing attention from both physical and computer science communities. The algorithms can be used to extract missing information, identify spurious interactions, evaluate network evolving mechanisms, and so on. This article summaries recent progress about link prediction algorithms, emphasizing on the contributions from physical perspectives and approaches, such as the random-walk-based methods and the maximum likelihood methods. We also introduce three typical applications: reconstruction of networks, evaluation of network evolving mechanism and classification of partially labelled networks. Finally, we introduce some applications and outline future challenges of link prediction algorithms.Comment: 44 pages, 5 figure

    Detection of the elite structure in a virtual multiplex social system by means of a generalized KK-core

    Get PDF
    Elites are subgroups of individuals within a society that have the ability and means to influence, lead, govern, and shape societies. Members of elites are often well connected individuals, which enables them to impose their influence to many and to quickly gather, process, and spread information. Here we argue that elites are not only composed of highly connected individuals, but also of intermediaries connecting hubs to form a cohesive and structured elite-subgroup at the core of a social network. For this purpose we present a generalization of the KK-core algorithm that allows to identify a social core that is composed of well-connected hubs together with their `connectors'. We show the validity of the idea in the framework of a virtual world defined by a massive multiplayer online game, on which we have complete information of various social networks. Exploiting this multiplex structure, we find that the hubs of the generalized KK-core identify those individuals that are high social performers in terms of a series of indicators that are available in the game. In addition, using a combined strategy which involves the generalized KK-core and the recently introduced MM-core, the elites of the different 'nations' present in the game are perfectly identified as modules of the generalized KK-core. Interesting sudden shifts in the composition of the elite cores are observed at deep levels. We show that elite detection with the traditional KK-core is not possible in a reliable way. The proposed method might be useful in a series of more general applications, such as community detection.Comment: 13 figures, 3 tables, 19 pages. Accepted for publication in PLoS ON

    Legal Networks: The Promises and Challenges of Legal Network Analysis

    Get PDF
    Article published in the Michigan State Law Review
    corecore