1,340 research outputs found

    Evaluating implicit feedback models using searcher simulations

    Get PDF
    In this article we describe an evaluation of relevance feedback (RF) algorithms using searcher simulations. Since these algorithms select additional terms for query modification based on inferences made from searcher interaction, not on relevance information searchers explicitly provide (as in traditional RF), we refer to them as implicit feedback models. We introduce six different models that base their decisions on the interactions of searchers and use different approaches to rank query modification terms. The aim of this article is to determine which of these models should be used to assist searchers in the systems we develop. To evaluate these models we used searcher simulations that afforded us more control over the experimental conditions than experiments with human subjects and allowed complex interaction to be modeled without the need for costly human experimentation. The simulation-based evaluation methodology measures how well the models learn the distribution of terms across relevant documents (i.e., learn what information is relevant) and how well they improve search effectiveness (i.e., create effective search queries). Our findings show that an implicit feedback model based on Jeffrey's rule of conditioning outperformed other models under investigation

    A simulated study of implicit feedback models

    Get PDF
    In this paper we report on a study of implicit feedback models for unobtrusively tracking the information needs of searchers. Such models use relevance information gathered from searcher interaction and can be a potential substitute for explicit relevance feedback. We introduce a variety of implicit feedback models designed to enhance an Information Retrieval (IR) system's representation of searchers' information needs. To benchmark their performance we use a simulation-centric evaluation methodology that measures how well each model learns relevance and improves search effectiveness. The results show that a heuristic-based binary voting model and one based on Jeffrey's rule of conditioning [5] outperform the other models under investigation

    A proposal for the evaluation of adaptive information retrieval systems using simulated interaction

    Get PDF
    The Centre for Next Generation Localisation (CNGL) is involved in building interactive adaptive systems which combine Information Retrieval (IR), Adaptive Hypermedia (AH) and adaptive web techniques and technologies. The complex functionality of these systems coupled with the variety of potential users means that the experiments necessary to evaluate such systems are difficult to plan, implement and execute. This evaluation requires both component-level scientific evaluation and user-based evaluation. Automated replication of experiments and simulation of user interaction would be hugely beneficial in the evaluation of adaptive information retrieval systems (AIRS). This paper proposes a methodology for the evaluation of AIRS which leverages simulated interaction. The hybrid approach detailed combines: (i) user-centred methods for simulating interaction and personalisation; (ii) evaluation metrics that combine Human Computer Interaction (HCI), AH and IR techniques; and (iii) the use of qualitative and quantitative evaluations. The benefits and limitations of evaluations based on user simulations are also discussed

    Synchronous collaborative information retrieval: techniques and evaluation

    Get PDF
    Synchronous Collaborative Information Retrieval refers to systems that support multiple users searching together at the same time in order to satisfy a shared information need. To date most SCIR systems have focussed on providing various awareness tools in order to enable collaborating users to coordinate the search task. However, requiring users to both search and coordinate the group activity may prove too demanding. On the other hand without effective coordination policies the group search may not be effective. In this paper we propose and evaluate novel system-mediated techniques for coordinating a group search. These techniques allow for an effective division of labour across the group whereby each group member can explore a subset of the search space.We also propose and evaluate techniques to support automated sharing of knowledge across searchers in SCIR, through novel collaborative and complementary relevance feedback techniques. In order to evaluate these techniques, we propose a framework for SCIR evaluation based on simulations. To populate these simulations we extract data from TREC interactive search logs. This work represent the first simulations of SCIR to date and the first such use of this TREC data

    Searching and Stopping: An Analysis of Stopping Rules and Strategies

    Get PDF
    Searching naturally involves stopping points, both at a query level (how far down the ranked list should I go?) and at a session level (how many queries should I issue?). Understanding when searchers stop has been of much interest to the community because it is fundamental to how we evaluate search behaviour and performance. Research has shown that searchers find it difficult to formalise stopping criteria, and typically resort to their intuition of what is "good enough". While various heuristics and stopping criteria have been proposed, little work has investigated how well they perform, and whether searchers actually conform to any of these rules. In this paper, we undertake the first large scale study of stopping rules, investigating how they influence overall session performance, and which rules best match actual stopping behaviour. Our work is focused on stopping at the query level in the context of ad-hoc topic retrieval, where searchers undertake search tasks within a fixed time period. We show that stopping strategies based upon the disgust or frustration point rules - both of which capture a searcher's tolerance to non-relevance - typically result in (i) the best overall performance, and (ii) provide the closest approximation to actual searcher behaviour, although a fixed depth approach also performs remarkably well. Findings from this study have implications regarding how we build measures, and how we conduct simulations of search behaviours

    Combining relevance information in a synchronous collaborative information retrieval environment

    Get PDF
    Traditionally information retrieval (IR) research has focussed on a single user interaction modality, where a user searches to satisfy an information need. Recent advances in both web technologies, such as the sociable web of Web 2.0, and computer hardware, such as tabletop interface devices, have enabled multiple users to collaborate on many computer-related tasks. Due to these advances there is an increasing need to support two or more users searching together at the same time, in order to satisfy a shared information need, which we refer to as Synchronous Collaborative Information Retrieval. Synchronous Collaborative Information Retrieval (SCIR) represents a significant paradigmatic shift from traditional IR systems. In order to support an effective SCIR search, new techniques are required to coordinate users' activities. In this chapter we explore the effectiveness of a sharing of knowledge policy on a collaborating group. Sharing of knowledge refers to the process of passing relevance information across users, if one user finds items of relevance to the search task then the group should benefit in the form of improved ranked lists returned to each searcher. In order to evaluate the proposed techniques we simulate two users searching together through an incremental feedback system. The simulation assumes that users decide on an initial query with which to begin the collaborative search and proceed through the search by providing relevance judgments to the system and receiving a new ranked list. In order to populate these simulations we extract data from the interaction logs of various experimental IR systems from previous Text REtrieval Conference (TREC) workshops

    Colombus: providing personalized recommendations for drifting user interests

    Get PDF
    The query formulationg process if often a problematic activity due to the cognitive load that it imposes to users. This issue is further amplified by the uncertainty of searchers with regards to their searching needs and their lack of training on effective searching techniques. Also, given the tremendous growth of the world wide web, the amount of imformation users find during their daily search episodes is often overwhelming. Unfortunatelly, web search engines do not follow the trends and advancements in this area, while real personalization features have yet to appear. As a result, keeping up-to-date with recent information about our personal interests is a time-consuming task. Also, often these information requirements change by sliding into new topics. In this case, the rate of change can be sudden and abrupt, or more gradual. Taking into account all these aspects, we believe that an information assistant, a profile-aware tool capable of adapting to users’ evolving needs and aiding them to keep track of their personal data, can greatly help them in this endeavor. Information gathering from a combination of explicit and implicit feedback could allow such systems to detect their search requirements and present additional information, with the least possible effort from them. In this paper, we describe the design, development and evaluation of Colombus, a system aiming to meet individual needs of the searchers. The system’s goal is to pro-actively fetch and present relevant, high quality documents on regular basis. Based entirely on implicit feedback gathering, our system concentrates on detecting drifts in user interests and accomodate them effectively in their profiles with no additional interaction from their side. Current methodologies in information retrieval do not support the evaluation of such systems and techniques. Lab-based experiments can be carried out in large batches but their accuracy often questione. On the other hand, user studies are much more accurate, but setting up a user base for large-scale experiments is often not feasible. We have designed a hybrid evaluation methodology that combines large sets of lab experiments based on searcher simulations together with user experiments, where fifteen searchers used the system regularly for 15 days. At the first stage, the simulation experiments were aiming attuning Colombus, while the various component evaluation and results gathering was carried out at the second stage, throughout the user study. A baseline system was also employed in order to make a direct comparison of Colombus against a current web search engine. The evaluation results illustrate that the Personalized Information Assistant is effective in capturing and satisfying users’ evolving information needs and providing additional information on their behalf

    Validating simulated interaction for retrieval evaluation

    Get PDF
    A searcher’s interaction with a retrieval system consists of actions such as query formulation, search result list interaction and document interaction. The simulation of searcher interaction has recently gained momentum in the analysis and evaluation of interactive information retrieval (IIR). However, a key issue that has not yet been adequately addressed is the validity of such IIR simulations and whether they reliably predict the performance obtained by a searcher across the session. The aim of this paper is to determine the validity of the common interaction model (CIM) typically used for simulating multi-query sessions. We focus on search result interactions, i.e., inspecting snippets, examining documents and deciding when to stop examining the results of a single query, or when to stop the whole session. To this end, we run a series of simulations grounded by real world behavioral data to show how accurate and responsive the model is to various experimental conditions under which the data were produced. We then validate on a second real world data set derived under similar experimental conditions. We seek to predict cumulated gain across the session. We find that the interaction model with a query-level stopping strategy based on consecutive non-relevant snippets leads to the highest prediction accuracy, and lowest deviation from ground truth, around 9 to 15% depending on the experimental conditions. To our knowledge, the present study is the first validation effort of the CIM that shows that the model’s acceptance and use is justified within IIR evaluations. We also identify and discuss ways to further improve the CIM and its behavioral parameters for more accurate simulations
    corecore