8,789 research outputs found

    Resilience Model for Teams of Autonomous Unmanned Aerial Vehicles (UAV) Executing Surveillance Missions

    Get PDF
    Teams of low-cost Unmanned Aerial Vehicles (UAVs) have gained acceptance as an alternative for cooperatively searching and surveilling terrains. These UAVs are assembled with low-reliability components, so unit failures are possible. Losing UAVs to failures decreases the team\u27s coverage efficiency and impacts communication, given that UAVs are also communication nodes. Such is the case of a Flying Ad Hoc Network (FANET), where the failure of a communication node may isolate segments of the network covering several nodes. The main goal of this study is to develop a resilience model that would allow us to analyze the effects of individual UAV failures on the team\u27s performance to improve the team\u27s resilience. The proposed solution models and simulates the UAV team using Agent-Based Modeling and Simulation. UAVs are modeled as autonomous agents, and the searched terrain as a two-dimensional M x N grid. Communication between agents permits having the exact data on the transit and occupation of all cells in real time. Such communication allows the UAV agents to estimate the best alternatives to move within the grid and know the exact number of all agents\u27 visits to the cells. Each UAV is simulated as a hobbyist, fixed-wing airplane equipped with a generic set of actuators and a generic controller. Individual UAV failures are simulated following reliability Fault Trees. Each affected UAV is disabled and eliminated from the pool of active units. After each unit failure, the system generates a new topology. It produces a set of minimum-distance trees for each node (UAV) in the grid. The new trees will thus depict the rearrangement links as required after a node failure or if changes occur in the topology due to node movement. The model should generate parameters such as the number and location of compromised nodes, performance before and after the failure, and the estimated time of restitution needed to model the team\u27s resilience. The study addresses three research goals: identifying appropriate tools for modeling UAV scenarios, developing a model for assessing UAVs team resilience that overcomes previous studies\u27 limitations, and testing the model through multiple simulations. The study fills a gap in the literature as previous studies focus on system communication disruptions (i.e., node failures) without considering UAV unit reliability. This consideration becomes critical as using small, low-cost units prone to failure becomes widespread

    Hopscotch: Robust Multi-agent Search

    Get PDF
    The task of searching a space is critical to a wide range of diverse applications such as land mine clearing and planetary exploration. Because applications frequently require searching remote or hazardous locations, and because the task is easily divisible, it is natural to consider the use of multi-robot teams to accomplish the search task. An important topic of research in this area is the division of the task among robot agents. Interrelated with subtask assignment is failure handling, in the sense that, when an agent fails, its part of the task must then be performed by other agents. This thesis describes Hopscotch, a multi-agent search strategy that divides the search area into a grid of lots. Each agent is assigned responsibility to search one lot at a time, and upon completing the search of that lot the agent is assigned a new lot. Assignment occurs in real time using a simple contract net. Because lots that have been previously searched are skipped, the order of search from the point of view of a particular agent is reminiscent of the progression of steps in the playground game of Hopscotch. Decomposition of the search area is a common approach to multi-agent search, and auction-based contract net strategies have appeared in recent literature as a method of task allocation in multi-agent systems. The Hopscotch strategy combines the two, with a strong focus on robust tolerance of agent failures. Contract nets typically divide all known tasks among available resources. In contrast, Hopscotch limits each agent to one assigned lot at a time, so that failure of an agent compels re-allocation of only one lot search task. Furthermore, the contract net is implemented in an unconventional manner that empowers each agent with responsibility for contract management. This novel combination of real-time assignment and decentralized management allows Hopscotch to resiliently cope with agent failures. The Hopscotch strategy was modeled and compared to other multi-agent strate- gies that tackle the search task in a variety of ways. Simulation results show that Hopscotch is failure-tolerant and very effective in comparison to the other approaches in terms of both search time and search efficiency. Although the search task modeled here is a basic one, results from simulations show the promise of using this strategy for more complicated scenarios, and with actual robot agents

    NeBula: TEAM CoSTAR’s robotic autonomy solution that won phase II of DARPA subterranean challenge

    Get PDF
    This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in the DARPA Subterranean Challenge. Specifically, it presents the techniques utilized within the Tunnel (2019) and Urban (2020) competitions, where CoSTAR achieved second and first place, respectively. We also discuss CoSTAR’s demonstrations in Martian-analog surface and subsurface (lava tubes) exploration. The paper introduces our autonomy solution, referred to as NeBula (Networked Belief-aware Perceptual Autonomy). NeBula is an uncertainty-aware framework that aims at enabling resilient and modular autonomy solutions by performing reasoning and decision making in the belief space (space of probability distributions over the robot and world states). We discuss various components of the NeBula framework, including (i) geometric and semantic environment mapping, (ii) a multi-modal positioning system, (iii) traversability analysis and local planning, (iv) global motion planning and exploration behavior, (v) risk-aware mission planning, (vi) networking and decentralized reasoning, and (vii) learning-enabled adaptation. We discuss the performance of NeBula on several robot types (e.g., wheeled, legged, flying), in various environments. We discuss the specific results and lessons learned from fielding this solution in the challenging courses of the DARPA Subterranean Challenge competition.Peer ReviewedAgha, A., Otsu, K., Morrell, B., Fan, D. D., Thakker, R., Santamaria-Navarro, A., Kim, S.-K., Bouman, A., Lei, X., Edlund, J., Ginting, M. F., Ebadi, K., Anderson, M., Pailevanian, T., Terry, E., Wolf, M., Tagliabue, A., Vaquero, T. S., Palieri, M., Tepsuporn, S., Chang, Y., Kalantari, A., Chavez, F., Lopez, B., Funabiki, N., Miles, G., Touma, T., Buscicchio, A., Tordesillas, J., Alatur, N., Nash, J., Walsh, W., Jung, S., Lee, H., Kanellakis, C., Mayo, J., Harper, S., Kaufmann, M., Dixit, A., Correa, G. J., Lee, C., Gao, J., Merewether, G., Maldonado-Contreras, J., Salhotra, G., Da Silva, M. S., Ramtoula, B., Fakoorian, S., Hatteland, A., Kim, T., Bartlett, T., Stephens, A., Kim, L., Bergh, C., Heiden, E., Lew, T., Cauligi, A., Heywood, T., Kramer, A., Leopold, H. A., Melikyan, H., Choi, H. C., Daftry, S., Toupet, O., Wee, I., Thakur, A., Feras, M., Beltrame, G., Nikolakopoulos, G., Shim, D., Carlone, L., & Burdick, JPostprint (published version

    Multi-Robot Coalition Formation for Distributed Area Coverage

    Get PDF
    The problem of distributed area coverage using multiple mobile robots is an important problem in distributed multi-robot sytems. Multi-robot coverage is encountered in many real world applications, including unmanned search & rescue, aerial reconnaissance, robotic demining, inspection of engineering structures, and automatic lawn mowing. To achieve optimal coverage, robots should move in an efficient manner and reduce repeated coverage of the same region that optimizes a certain performance metric such as the amount of time or energy expended by the robots. This dissertation especially focuses on using mini-robots with limited capabilities, such as low speed of the CPU and limited storage of the memory, to fulfill the efficient area coverage task. Previous research on distributed area coverage use offline or online path planning algorithms to address this problem. Some of the existing approaches use behavior-based algorithms where each robot implements simple rules and the interaction between robots manifests in the global objective of overall coverage of the environment. Our work extends this line of research using an emergent, swarming based technique where robots use partial coverage histories from themselves as well as other robots in their vicinity to make local decisions that attempt to ensure overall efficient area coverage. We have then extended this technique in two directions. First, we have integreated the individual-robot, swarming-based technique for area coverage to teams of robots that move in formation to perform area coverage more efficiently than robots that move individually. Then we have used a team formation technique from coalition game theory, called Weighted Voting Game (WVG) to handle situations where a team moving in formation while performing area coverage has to dynamically reconfigure into sub-teams or merge with other teams, to continue the area coverage efficiently. We have validated our techniques by testing them on accurate models of e-puck robots in the Webots robot simulation platform, as well as on physical e-puck robots

    Small unmanned airborne systems to support oil and gas pipeline monitoring and mapping

    Get PDF
    Acknowledgments We thank Johan Havelaar, Aeryon Labs Inc., AeronVironment Inc. and Aeronautics Inc. for kindly permitting the use of materials in Fig. 1.Peer reviewedPublisher PD

    Common Metrics for Human-Robot Interaction

    Get PDF
    This paper describes an effort to identify common metrics for task-oriented human-robot interaction (HRI). We begin by discussing the need for a toolkit of HRI metrics. We then describe the framework of our work and identify important biasing factors that must be taken into consideration. Finally, we present suggested common metrics for standardization and a case study. Preparation of a larger, more detailed toolkit is in progress

    Environmental Hazard Analysis - a Variant of Preliminary Hazard Analysis for Autonomous Mobile Robots

    Get PDF
    © 2014, Springer Science+Business Media Dordrecht. Robot manufacturers will be required to demonstrate objectively that all reasonably foreseeable hazards have been identified in any robotic product design that is to be marketed commercially. This is problematic for autonomous mobile robots because conventional methods, which have been developed for automatic systems do not assist safety analysts in identifying non-mission interactions with environmental features that are not directly associated with the robot’s design mission, and which may comprise the majority of the required tasks of autonomous robots. In this paper we develop a new variant of preliminary hazard analysis that is explicitly aimed at identifying non-mission interactions by means of new sets of guidewords not normally found in existing variants. We develop the required features of the method and describe its application to several small trials conducted at Bristol Robotics Laboratory in the 2011–2012 period
    • …
    corecore