17 research outputs found

    Enabling Efficient, Robust, and Scalable Wireless Multi-Hop Networks: A Cross-Layer Approach Exploiting Cooperative Diversity

    Get PDF
    The practical performance in terms of throughput, robustness, and scalability of traditional Wireless Multihop Networks (WMNs) is limited. The key problem is that such networks do not allow for advanced physical layers, which typically require (a) spatial diversity via multiple antennas, (b) timely Channel State Information (CSI) feedback, and (c) a central instance that coordinates nodes. We propose Corridor-based Routing to address these issues. Our approach widens traditional hop-by-hop paths to span multiple nodes at each hop, and thus provide spatial diversity. As a result, at each hop, a group of transmitters cooperates at the physical layer to forward data to a group of receivers. We call two subsequent groups of nodes a stage. Since all nodes participating in data forwarding at a certain hop are part of the same fully connected stage, corridors only require one-hop CSI feedback. Further, each stage operates independently. Thus, Corridor-based Routing does not require a network-wide central instance, and is scalable. We design a protocol that builds end-to-end corridors. As expected, this incurs more overhead than finding a traditional WMN path. However, if the resulting corridor provides throughput gains, the overhead compensates after a certain number of transmitted packets. We adapt two physical layers to the aforementioned stage topology, namely, Orthogonal Frequency-Division Multiple Access (OFDMA), and Interference Alignment (IA). In OFDMA, we allocate each subchannel to a link of the current stage which provides good channel conditions. As a result, we avoid deep fades, which enables OFDMA to transmit data robustly in scenarios in which traditional schemes cannot operate. Moreover, it achieves higher throughputs than such schemes. To minimize the transmission time at each stage, we present an allocation mechanism that takes into account both the CSI, and the amount of data that each transmitter needs to transmit. Further, we address practical issues and implement our scheme on software-defined radios. We achieve roughly 30% average throughput gain compared to a WMN not using corridors. We analyze OFDMA in theory, simulation, and practice. Our results match in all three domains. Further, we design a physical layer for corridor stages based on IA in the frequency domain. Our practical experiments show that IA often performs poorly because the decoding process augments noise. We find that the augmentation factor depends only on the channel coefficients of the subchannels that IA uses. We design a mechanism to determine which transmitters should transmit to which receivers on which subchannels to minimize noise. Since the number of possible combinations is very large, we use heuristics that reduce the search space significantly. Based on this design, we present the first practical frequency IA system. Our results show that our approach avoids noise augmentation efficiently, and thus operates robustly. We observe that IA is most suitable for stages with specific CSI and traffic conditions. In such scenarios, the throughput gain compared to a WMN not using corridors is 25% on average, and 150% in the best case. Finally, we design a decision engine which estimates the performance of both OFDMA and IA for a given stage, and chooses the one which achieves the highest throughput. We evaluate corridors with up to five stages, and achieve roughly 20% average throughput gain. We conclude that switching among physical layers to adapt to the particular CSI and traffic conditions of each stage is crucial for efficient and robust operation

    Rethinking Wireless: Building Next-Generation Networks

    Full text link
    We face a growing challenge to the design, deployment and management of wireless networks that largely stems from the need to operate in an increasingly spectrum-sparse environment, the need for greater concurrency among devices and the need for greater coordination between heterogeneous wireless protocols. Unfortunately, our current wireless networks lack interoperability, are deployed with fixed functions, and omit easy programmability and extensibility from their key design requirements. In this dissertation, we study the design of next-generation wireless networks and analyze the individual components required to build such an infrastructure. Re-designing a wireless architecture must be undertaken carefully to balance new and coordinated multipoint (CoMP) techniques with the backward compatibility necessary to support the large number of existing devices. These next-generation wireless networks will be predominantly software-defined and will have three components: (a) a wireless component that consists of software-defined radio resource units (RRUs) or access points (APs); (b) a software-defined backhaul control plane that manages the transfer of RF data between the RRUs and the centralized processing resource; and (c) a centralized datacenter/cloud compute resource that processes RF signal data from all attached RRUs. The dissertation addresses the following four key problems in next-generation networks: (1) Making Existing Wireless Devices Spectrum-Agile, (2) Cooperative Compression of the Wireless Backhaul, (3) Spectrum Coordination and (4) Spectrum Coordination.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/102341/1/zontar_1.pd

    Programming techniques for efficient and interoperable software defined radios

    Get PDF
    Recently, Software-Dened Radios (SDRs) has became a hot research topic in wireless communications eld. This is jointly due to the increasing request of reconfigurable and interoperable multi-standard radio systems able to learn from their surrounding environment and efficiently exploit the available frequency spectrum resources, so realizing the cognitive radio paradigm, and to the availability of reprogrammable hardware architectures providing the computing power necessary to meet the tight real-time constraints typical of the state-of-art wideband communications standards. Most SDR implementations are based on mixed architectures in which Field Programmable Gate Arrays (FPGA), Digital Signal Processors (DSP) and General Purpose Processors (GPP) coexist. GPP-based solutions, even if providing the highest level of flexibility, are typically avoided because of their computational inefficiency and power consumption. Starting from these assumptions, this thesis tries to jointly face two of the main important issues in GPP-based SDR systems: the computational efficiency and the interoperability capacity. In the first part, this thesis presents the potential of a novel programming technique, named Memory Acceleration (MA), in which the memory resources typical of GPP-based systems are used to assist central processor in executing real-time signal processing operations. This technique, belonging to the classical computer-science optimization techniques known as Space-Time trade-offs, defines novel algorithmic methods to assist developers in designing their software-defined signal processing algorithms. In order to show its applicability some "real-world" case studies are presented together with the acceleration factor obtained. In the second part of the thesis, the interoperability issue in SDR systems is also considered. Existing software architectures, like the Software Communications Architecture (SCA), abstract the hardware/software components of a radio communications chain using a middleware like CORBA for providing full portability and interoperability to the implemented chain, called waveform in the SCA parlance. This feature is paid in terms of computational overhead introduced by the software communications middleware and this is one of the reasons why GPP-based architecture are generally discarded also for the implementation of narrow-band SCA-compliant communications standards. In this thesis we briefly analyse SCA architecture and an open-source SCA-compliant framework, ie. OSSIE, and provide guidelines to enable component-based multithreading programming and CPU affinity in that framework. We also detail the implementation of a real-time SCA-compliant waveform developed inside this modified framework, i.e. the VHF analogue aeronautical communications transceiver. Finally, we provide the proof of how it is possible to implement an efficient and interoperable real-time wideband SCA-compliant waveform, i.e. the AeroMACS waveform, on a GPP-based architecture by merging the acceleration factor provided by MA technique and the interoperability feature ensured by SCA architecture

    Design and evaluation of OFDM radio interfaces for high mobility communications

    Get PDF
    [Resumo] Nas dúas últimas décadas, as modulacións multiportadora emerxeron como una solución de baixa complexidade para combatir os efectos do multitraxecto en comuniacións sen fíos. Entre elas, Orthogonal Frequency Division Multiplexing (OFOM) é posiblemente o esquema de modulación máis estudado, e tamén amplamente adoptado como alicerce de estándares da industria como WiMAX ou LTE. Sen embargo, OFDM é sensible a canles que varian ca tempo, unha característica dos escenarios con mobilidade, debido á aparición da interferencia entre portadoras (ICI). A implementación de equipamento hardware para o usuario final faise normalmente en chips dedicados, afnda que entornos de investigación, prefírense solucións máis flexibles. Unha aproximación popular é a coñecida como Software Defined Radio (SOR), onde os algoritmos de procesado de sinal se implementan en hardware reconfigurable como Digital Signal Processors (OSPs) e Field Programmable Gate Arrays (FPGAs). O obxectivo deste traballo é dobre. Por un lado, definir unha arquitectura para implementacións de tempo real de capas físicas basadas en OFDM usando como referencia O estándar WiMAX, probada Dunha plataforma composta por OSPs e FPGAs. Por outra banda, estudar os efectos da selectividade en tempo no sinal OFDM, definindo métodos de estimación de canle que teñen en conta a ICI, e evaluándoos tanto en simulación como con medidas experimentais. Seguíronse dúas aproximacións para caracterizar o comportamento de formas de onda OFDM baixo condicións de mobilidade, unha basada nun emulador de canle que traballa en tempo real, e outra en inducir grandes ensanchamentos Doppler no sinal mediante a extensión da duración do símbolo OFOM.[Resumen] En las dos últimas décadas, las modulaciones multiportadora han emergido como una solución de baja complejidad para combatir los efectos del multitrayecto en comunicaciones iDalámbricas. Entre ellas, Orthogonal Frequency Division Mulriplexing (OFDM) es posiblemente el esquema de modulación más estudiado, y también ampliamente adoptado como fundamento de estándares de la industria como WiMAX o LTE. Sin embargo, OFDM es sensible a canales que varían con el tiempo, una característica de los escenarios coo movilidad, debido a la aparicióo de la interferencia entre portadoras (ICI). La implementación de equipamiento hardware para el usuario final se hace normalmente en chips dedicados, aunque eo entornos de investigación, son preferibles soluciones más Hexibles. Una aproximación popular es la conocida como Software Defined Radio (SDR), donde los algOritmos de procesado de señal se implementan en hardware reconfigurable como Digital Signa! Processors (DSPs) y Field Programmable Gate AIrays (FPGAs). El objetivo de este trabajo es doble. Por un lado. definir una arquitectura para implementaciones de tiempo real de capas ¡lSicas basadas en OFDM usando como referencia el estándar WiMAX, probada en una plataforma compuesta por DSPs y FPGAs. Por otro lado, estudiar los efectos de la selectividad en tiempo en la señal OFDM, definiendo métodos de estimacióo de canal que tengan eo cueota la ICI, y evaluándolos tanto en simulación como con medidas experimenta1es. Se han seguido dos aproximaciones para caracterizar el comportamiento de formas de onda OFDM bajo condiciones de mobilidad, una basada en un emulador de canal que trabaja en tiempo real. y otra en inducir grandes ensanchamientos Doppler en la señal mediante la extensión de la duración del símbolo OFDM.[Abstract] In Ihe last two decades, multicarrier modulations have emerged as a low complexity solulion to combal the effects of Ihe multipalh in wireless communicalions. Among Ihem, Orthogonal Frequency Division Mulliplexing (OFOM) is possibly Ihe mosl sludied modulation scheme, and has a1so been widely adopted as Ihe foundation of induslry standards such as WiMAX or LTE. However, OFOM is sensitive lo time selective channels, which are featured in mobility scenarlos, due lO Ihe appearance of Inler-Carrier Interference (ICI). Implemenlation of hardware equipmenl for Ihe end user is usually implemenled in dedicaled chips, bul in researeh environments, more flexible solutions are preferred. One popular approach is the so ealled Software Defined Radio (SOR), where the signal processing a1gorithms are implemented in reconfigurable hardware sueh as Digital Signal Processors (DSPs) and Field Prograrnmable Gate Arrays (FPGAs). The aim of Ibis work is two-fold. On the one hand, to define an architeclure for Ihe implementation of real-time OFOM-based physical layers, using as a reference Ihe WiMAX standard, and it is tested on a platform composed by DSPs and FPGAs. On the olher hand, to study Ihe effeets of !he time seleetivity on !he OFOM signal, defining channel estimation me!hods aware of !he ICI, and ils evaluation bo!h in simulation as well as experimental measuremenls. Two approaches have been followed to assess the behavior of OFOM waveforms under mobility conditions, one based on a real-time channel emulator, and the other on inducing large Doppler spreads in !he signal by extending the duration of Ihe OFDM symbols

    Radio and computing resource management in SDR clouds

    Get PDF
    The aim of this thesis is defining and developing the concept of an efficient management of radio and computing resources in an SDR cloud. The SDR cloud breaks with today's cellular architecture. A set of distributed antennas are connected by optical fibre to data processing centres. The radio and computing infrastructure can be shared between different operators (virtualization), reducing costs and risks, while increasing the capacity and creating new business models and opportunities. The data centre centralizes the management of all system resources: antennas, spectrum, computing, routing, etc. Specially relevant is the computing resource management (CRM), whose objective is dynamically providing sufficient computing resources for a real-time execution of signal processing algorithms. Current CRM techniques are not designed for wireless applications. We demonstrate that this imposes a limit on the wireless traffic a CRM entity is capable to support. Based on this, a distributed management is proposed, where multiple CRM entities manage a cluster of processors, whose optimal size is derived from the traffic density. Radio resource management techniques (RRM) also need to be adapted to the characteristics of the new SDR cloud architecture. We introduce a linear cost model to measure the cost associated to the infrastructure resources consumed according to the pay-per-use model. Based on this model, we formulate the efficiency maximization power allocation problem (EMPA). The operational costs per transmitted bit achieved by EMPA are 6 times lower than with traditional power allocation methods. Analytical solutions are obtained for the single channel case, with and without channel state information at the transmitter. It is shown that the optimal transmission rate is an increasing function of the product of the channel gain with the operational costs divided by the power costs. The EMPA solution for multiple channels has the form of water-filling, present in many power allocation problems. In order to be able to obtain insights about how the optimal solution behaves as a function of the problem parameters, a novel technique based on ordered statistics has been developed. This technique allows solving general water-filling problems based on the channel statistics rather than their realization. This approach has allowed designing a low complexity EMPA algorithm (2 to 4 orders of magnitude faster than state-of-the-art algorithms). Using the ordered statistics technique, we have shown that the optimal transmission rate behaviour with respect to the average channel gains and cost parameters is equivalent to the single channel case and that the efficiency increases with the number of available channels. The results can be applied to design more efficient SDR clouds. As an example, we have derived the optimal ratio of number of antennas per user that maximizes the efficiency. As new users enter and leave the network, this ratio should be kept constant, enabling and disabling antennas dynamically. This approach exploits the dynamism and elasticity provided by the SDR cloud. In summary, this dissertation aims at influencing towards a change in the communications system management model (typically RRM), considering the introduction of the new infrastructure model (SDR cloud), new business models (based on Cloud Computing) and a more conciliatory view of an efficient resource management, not only focused on the optimization of the spectrum usage.El objetivo de esta tesis es de nir y desarrollar el concepto de gesti on e ciente de los recursos de radio y computaci on en un SDR cloud. El SDR cloud rompe con la estructura del sistema celular actual. Un conjunto de antenas distribuidas se conectan a centros de procesamiento mediante enlaces de comunicaci on de bra optica. La infraestructura de radio y procesamiento puede ser compartida entre distintos operadores (virtualizacion), disminuyendo costes y riesgos, aumentando la capacidad y abriendo nuevos modelos y oportunidades de negocio. La centralizaci on de la gesti on del sistema viene soportada por el centro de procesamiento, donde se realiza una gesti on de todos los recursos del sistema: antenas, espectro, computaci on, enrutado, etc. Resulta de especial relevancia la gesti on de los recursos de computaci on (CRM) cuyo objetivo es el de proveer, din amicamente, de su cientes recursos de computaci on para la ejecuci on en tiempo real de algoritmos de procesado del señal. Las t ecnicas actuales de CRM no han sido diseñadas para aplicaciones de comunicaciones. Demostramos que esta caracter stica impone un l ímite en el tr áfi co que un gestor CRM puede soportar. En base a ello, proponemos una gesti on distribuida donde m ultiples entidades CRM gestionan grupos de procesadores, cuyo tamaño optimo se deriva de la densidad de tr áfi co. Las t ecnicas actuales de gesti on de recursos radio (RRM) tambi en deben ser adaptadas a las caracter sticas de la nueva arquitectura SDR cloud. Introducimos un modelo de coste lineal que caracteriza los costes asociados al consumo de recursos de la infraestructura seg un el modelo de pago-por-uso. A partir de este modelo, formulamos el problema de asignaci on de potencia de m axima e ciencia (EMPA). Mediante una asignaci on EMPA, los costes de operaci on por bit transmitido son del orden de 6 veces menores que con los m etodos tradicionales. Se han obtenido soluciones anal ticas para el caso de un solo canal, con y sin informacion del canal disponible en el transmisor, y se ha demostrado que la velocidad optima de transmisi on es una funci on creciente del producto de la ganancia del canal por los costes operativos dividido entre los costes de potencia. La soluci on EMPA para varios canales satisface el modelo "water- lling", presente en muchos tipos de optimizaci on de potencia. Con el objetivo de conocer c omo esta se comporta en funci on de los par ametros del sistema, se ha desarrollado una t ecnica nueva basada en estadí sticas ordenadas. Esta t ecnica permite solucionar el problema del water- lling bas andose en la estadí stica del canal en vez de en su realizaci on. Este planteamiento, despu es de profundos an alisis matem aticos, ha permitido desarrollar un algoritmo de asignaci on de potencia de baja complejidad (2 a 4 ordenes de magnitud m as r apido que el estado del arte). Mediante esta t ecnica, se ha demostrado que la velocidad optima de transmisi on se comporta de forma equivalente al caso de un solo canal y que la e ciencia incrementa a medida que aumentan el numero de canales disponibles. Estos resultados pueden aplicarse a diseñar un SDR cloud de forma m as e ciente. A modo de ejemplo, hemos obtenido el ratio optimo de n umero de antenas por usuario que maximiza la e ciencia. A medida que los usuarios entran y salen de la red, este ratio debe mantenerse constante, a fin de mantener una efi ciencia lo m as alta posible, activando o desactivando antenas din amicamente. De esta forma se explota completamente el dinamismo ofrecido por una arquitectura el astica como el SDR cloud. En de nitiva, este trabajo pretende incidir en un cambio del modelo de gesti on de un sistema de comunicaciones (t ípicamente RRM) habida cuenta de la introducci on de una nueva infraestructura (SDR cloud), nuevos modelos de negocio (basados en Cloud Computing) y una visi on m as integradora de la gesti on e ciente de los recursos del sistema, no solo centrada en la optimizaci on del uso del espectro

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Enabling Technologies for Cognitive Optical Networks

    Get PDF

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin
    corecore