4,075 research outputs found

    Automatic Frechet differentiation for the numerical solution of boundary-value problems

    Get PDF
    A new solver for nonlinear boundary-value problems (BVPs) in Matlab is presented, based on the Chebfun software system for representing functions and operators automatically as numerical objects. The solver implements Newton's method in function space, where instead of the usual Jacobian matrices, the derivatives involved are Frechet derivatives. A major novelty of this approach is the application of automatic differentiation (AD) techniques to compute the operator-valued Frechet derivatives in the continuous context. Other novelties include the use of anonymous functions and numbering of each variable to enable a recursive, delayed evaluation of derivatives with forward mode AD. The AD techniques are applied within a new Chebfun class called chebop which allows users to set up and solve nonlinear BVPs in a few lines of code, using the "nonlinear backslash" operator (\). This framework enables one to study the behaviour of Newton's method in function space

    Derivative based global sensitivity measures

    Full text link
    The method of derivative based global sensitivity measures (DGSM) has recently become popular among practitioners. It has a strong link with the Morris screening method and Sobol' sensitivity indices and has several advantages over them. DGSM are very easy to implement and evaluate numerically. The computational time required for numerical evaluation of DGSM is generally much lower than that for estimation of Sobol' sensitivity indices. This paper presents a survey of recent advances in DGSM concerning lower and upper bounds on the values of Sobol' total sensitivity indices S_itotS\_{i}^{tot}. Using these bounds it is possible in most cases to get a good practical estimation of the values of S_itotS\_{i}^{tot} . Several examples are used to illustrate an application of DGSM
    • …
    corecore