3,051 research outputs found

    Evaluating color texture descriptors under large variations of controlled lighting conditions

    Full text link
    The recognition of color texture under varying lighting conditions is still an open issue. Several features have been proposed for this purpose, ranging from traditional statistical descriptors to features extracted with neural networks. Still, it is not completely clear under what circumstances a feature performs better than the others. In this paper we report an extensive comparison of old and new texture features, with and without a color normalization step, with a particular focus on how they are affected by small and large variation in the lighting conditions. The evaluation is performed on a new texture database including 68 samples of raw food acquired under 46 conditions that present single and combined variations of light color, direction and intensity. The database allows to systematically investigate the robustness of texture descriptors across a large range of variations of imaging conditions.Comment: Submitted to the Journal of the Optical Society of America

    Ensemble of texture descriptors and classifiers for face recognition

    Get PDF
    Abstract Presented in this paper is a novel system for face recognition that works well in the wild and that is based on ensembles of descriptors that utilize different preprocessing techniques. The power of our proposed approach is demonstrated on two datasets: the FERET dataset and the Labeled Faces in the Wild (LFW) dataset. In the FERET datasets, where the aim is identification, we use the angle distance. In the LFW dataset, where the aim is to verify a given match, we use the Support Vector Machine and Similarity Metric Learning. Our proposed system performs well on both datasets, obtaining, to the best of our knowledge, one of the highest performance rates published in the literature on the FERET datasets. Particularly noteworthy is the fact that these good results on both datasets are obtained without using additional training patterns. The MATLAB source of our best ensemble approach will be freely available at https://www.dei.unipd.it/node/2357
    corecore