20 research outputs found

    SLAM for Visually Impaired People: A Survey

    Full text link
    In recent decades, several assistive technologies for visually impaired and blind (VIB) people have been developed to improve their ability to navigate independently and safely. At the same time, simultaneous localization and mapping (SLAM) techniques have become sufficiently robust and efficient to be adopted in the development of assistive technologies. In this paper, we first report the results of an anonymous survey conducted with VIB people to understand their experience and needs; we focus on digital assistive technologies that help them with indoor and outdoor navigation. Then, we present a literature review of assistive technologies based on SLAM. We discuss proposed approaches and indicate their pros and cons. We conclude by presenting future opportunities and challenges in this domain.Comment: 26 pages, 5 tables, 3 figure

    A Survey of Augmented Reality

    Get PDF
    © 2015 M. Billinghurst, A. Clark, and G. Lee. This survey summarizes almost 50 years of research and development in the field of Augmented Reality (AR). From early research in the 1960's until widespread availability by the 2010's there has been steady progress towards the goal of being able to seamlessly combine real and virtual worlds. We provide an overview of the common definitions of AR, and show how AR fits into taxonomies of other related technologies. A history of important milestones in Augmented Reality is followed by sections on the key enabling technologies of tracking, display and input devices. We also review design guidelines and provide some examples of successful AR applications. Finally, we conclude with a summary of directions for future work and a review of some of the areas that are currently being researched

    Deep Learning Methods for Fingerprint-Based Indoor and Outdoor Positioning

    Get PDF
    Outdoor positioning systems based on the Global Navigation Satellite System have several shortcomings that have deemed their use for indoor positioning impractical. Location fingerprinting, which utilizes machine learning, has emerged as a viable method and solution for indoor positioning due to its simple concept and accurate performance. In the past, shallow learning algorithms were traditionally used in location fingerprinting. Recently, the research community started utilizing deep learning methods for fingerprinting after witnessing the great success and superiority these methods have over traditional/shallow machine learning algorithms. The contribution of this dissertation is fourfold: First, a Convolutional Neural Network (CNN)-based method for localizing a smartwatch indoors using geomagnetic field measurements is presented. The proposed method was tested on real world data in an indoor environment composed of three corridors of different lengths and three rooms of different sizes. Experimental results show a promising location classification accuracy of 97.77% with a mean localization error of 0.14 meter (m). Second, a method that makes use of cellular signals emitting from a serving eNodeB to provide symbolic indoor positioning is presented. The proposed method utilizes Denoising Autoencoders (DAEs) to mitigate the effects of cellular signal loss. The proposed method was evaluated using real-world data collected from two different smartphones inside a representative apartment of eight symbolic spaces. Experimental results verify that the proposed method outperforms conventional symbolic indoor positioning techniques in various performance metrics. Third, an investigation is conducted to determine whether Variational Autoencoders (VAEs) and Conditional Variational Autoencoders (CVAEs) are able to learn the distribution of the minority symbolic spaces, for a highly imbalanced fingerprinting dataset, so as to generate synthetic fingerprints that promote enhancements in a classifier\u27s performance. Experimental results show that this is indeed the case. By using various performance evaluation metrics, the achieved results are compared to those obtained by two state-of-the-art oversampling methods known as Synthetic Minority Oversampling TEchnique (SMOTE) and ADAptive SYNthetic (ADASYN) sampling. Fourth, a novel dataset of outdoor location fingerprints is presented. The proposed dataset, named OutFin, addresses the lack of publicly available datasets that researchers can use to develop, evaluate, and compare fingerprint-based positioning solutions which can constitute a high entry barrier for studies. OutFin is comprised of diverse data types such as WiFi, Bluetooth, and cellular signal strengths, in addition to measurements from various sensors including the magnetometer, accelerometer, gyroscope, barometer, and ambient light sensor. The collection area spanned four dispersed sites with a total of 122 Reference Points (RPs). Before OutFin was made available to the public, several experiments were conducted to validate its technical quality
    corecore