6,195 research outputs found

    Discrete representation strategies for foreign exchange prediction

    Get PDF
    This is an extended version of the paper presented at the 4th International Workshop NFMCP 2015 held in conjunction with ECML PKDD 2015. The initial version has been published in NFMCP 2015 conference proceedings as part of Springer Series. This paper presents a novel approach to financial times series (FTS) prediction by mapping hourly foreign exchange data to string representations and deriving simple trading strategies from them. To measure the degree of similarity in these market strings we apply familiar string kernels, bag of words and n-grams, whilst also introducing a new kernel, time-decay n-grams, that captures the temporal nature of FTS. In the process we propose a sequential Parzen windows algorithm based on discrete representations where trading decisions for each string are learned in an online manner and are thus subject to temporal fluctuations. We evaluate the strength of a number of representations using both the string version and its continuous counterpart, whilst also comparing the performance of different learning algorithms on these representations, namely support vector machines, Parzen windows and Fisher discriminant analysis. Our extensive experiments show that the simple string representation coupled with the sequential Parzen windows approach is capable of outperforming other more exotic approaches, supporting the idea that when it comes to working in high noise environments often the simplest approach is the most effective

    Modeling and Forecasting Realized Volatility

    Get PDF
    This paper provides a general framework for integration of high-frequency intraday data into the measurement, modeling and forecasting of daily and lower frequency volatility and return distributions. Most procedures for modeling and forecasting financial asset return volatilities, correlations, and distributions rely on restrictive and complicated parametric multivariate ARCH or stochastic volatility models, which often perform poorly at intraday frequencies. Use of realized volatility constructed from high-frequency intraday returns, in contrast, permits the use of traditional time series procedures for modeling and forecasting. Building on the theory of continuous-time arbitrage-free price processes and the theory of quadratic variation, we formally develop the links between the conditional covariance matrix and the concept of realized volatility. Next, using continuously recorded observations for the Deutschemark/Dollar and Yen /Dollar spot exchange rates covering more than a decade, we find that forecasts from a simple long-memory Gaussian vector autoregression for the logarithmic daily realized volatitilies perform admirably compared to popular daily ARCH and related models. Moreover, the vector autoregressive volatility forecast, coupled with a parametric lognormal-normal mixture distribution implied by the theoretically and empirically grounded assumption of normally distributed standardized returns, gives rise to well-calibrated density forecasts of future returns, and correspondingly accurate quintile estimates. Our results hold promise for practical modeling and forecasting of the large covariance matrices relevant in asset pricing, asset allocation and financial risk management applications.

    Modeling and Forecasting Realized Volatility

    Get PDF
    This paper provides a general framework for integration of high-frequency intraday data into the measurement forecasting of daily and lower frequency volatility and return distributions. Most procedures for modeling and forecasting financial asset return volatilities, correlations, and distributions rely on restrictive and complicated parametric multivariate ARCH or stochastic volatility models, which often perform poorly at intraday frequencies. Use of realized volatility constructed from high-frequency intraday returns, in contrast, permits the use of traditional time series procedures for modeling and forecasting. Building on the theory of continuous-time arbitrage-free price processes and the theory of quadratic variation, we formally develop the links between the conditional covariancematrix and the concept of realized volatility. Next, using continuously recorded observations for the Deutschemark Dollar and Yen / Dollar spot exchange rates covering more than a decade, we find that forecasts from a simple long-memory Gaussian vector autoregression for the logarithmic daily realized volatilities perform admirably compared to popular daily ARCH and related models. Moreover, the vector autoregressive volatility forecast, coupled with a parametric lognormal-normal mixture distribution implied by the theoretically and empirically grounded assumption of normally distributed standardized returns, gives rise to well-calibrated density forecasts of future returns, and correspondingly accurate quantile estimates. Our results hold promise for practical modeling and forecasting of the large covariance matrices relevant in asset pricing, asset allocation and financial risk management applications.

    Volatility forecasting

    Get PDF
    Volatility has been one of the most active and successful areas of research in time series econometrics and economic forecasting in recent decades. This chapter provides a selective survey of the most important theoretical developments and empirical insights to emerge from this burgeoning literature, with a distinct focus on forecasting applications. Volatility is inherently latent, and Section 1 begins with a brief intuitive account of various key volatility concepts. Section 2 then discusses a series of different economic situations in which volatility plays a crucial role, ranging from the use of volatility forecasts in portfolio allocation to density forecasting in risk management. Sections 3, 4 and 5 present a variety of alternative procedures for univariate volatility modeling and forecasting based on the GARCH, stochastic volatility and realized volatility paradigms, respectively. Section 6 extends the discussion to the multivariate problem of forecasting conditional covariances and correlations, and Section 7 discusses volatility forecast evaluation methods in both univariate and multivariate cases. Section 8 concludes briefly. JEL Klassifikation: C10, C53, G1

    Volatility Forecasting

    Get PDF
    Volatility has been one of the most active and successful areas of research in time series econometrics and economic forecasting in recent decades. This chapter provides a selective survey of the most important theoretical developments and empirical insights to emerge from this burgeoning literature, with a distinct focus on forecasting applications. Volatility is inherently latent, and Section 1 begins with a brief intuitive account of various key volatility concepts. Section 2 then discusses a series of different economic situations in which volatility plays a crucial role, ranging from the use of volatility forecasts in portfolio allocation to density forecasting in risk management. Sections 3,4 and 5 present a variety of alternative procedures for univariate volatility modeling and forecasting based on the GARCH, stochastic volatility and realized volatility paradigms, respectively. Section 6 extends the discussion to the multivariate problem of forecasting conditional covariances and correlations, and Section 7 discusses volatility forecast evaluation methods in both univariate and multivariate cases. Section 8 concludes briefly.

    Volatility Forecasting

    Get PDF
    Volatility has been one of the most active and successful areas of research in time series econometrics and economic forecasting in recent decades. This chapter provides a selective survey of the most important theoretical developments and empirical insights to emerge from this burgeoning literature, with a distinct focus on forecasting applications. Volatility is inherently latent, and Section 1 begins with a brief intuitive account of various key volatility concepts. Section 2 then discusses a series of different economic situations in which volatility plays a crucial role, ranging from the use of volatility forecasts in portfolio allocation to density forecasting in risk management. Sections 3, 4 and 5 present a variety of alternative procedures for univariate volatility modeling and forecasting based on the GARCH, stochastic volatility and realized volatility paradigms, respectively. Section 6 extends the discussion to the multivariate problem of forecasting conditional covariances and correlations, and Section 7 discusses volatility forecast evaluation methods in both univariate and multivariate cases. Section 8 concludes briefly.

    Modelling Financial High Frequency Data Using Point Processes

    Get PDF
    In this paper, we give an overview of the state-of-the-art in the econometric literature on the modeling of so-called financial point processes. The latter are associated with the random arrival of specific financial trading events, such as transactions, quote updates, limit orders or price changes observable based on financial high-frequency data. After discussing fundamental statistical concepts of point process theory, we review durationbased and intensity-based models of financial point processes. Whereas duration-based approaches are mostly preferable for univariate time series, intensity-based models provide powerful frameworks to model multivariate point processes in continuous time. We illustrate the most important properties of the individual models and discuss major empirical applications.Financial point processes, dynamic duration models, dynamic intensity models.

    Volatility Forecasting

    Get PDF
    Volatility has been one of the most active and successful areas of research in time series econometrics and economic forecasting in recent decades. This chapter provides a selective survey of the most important theoretical developments and empirical insights to emerge from this burgeoning literature, with a distinct focus on forecasting applications. Volatility is inherently latent, and Section 1 begins with a brief intuitive account of various key volatility concepts. Section 2 then discusses a series of different economic situations in which volatility plays a crucial role, ranging from the use of volatility forecasts in portfolio allocation to density forecasting in risk management. Sections 3, 4 and 5 present a variety of alternative procedures for univariate volatility modeling and forecasting based on the GARCH, stochastic volatility and realized volatility paradigms, respectively. Section 6 extends the discussion to the multivariate problem of forecasting conditional covariances and correlations, and Section 7 discusses volatility forecast evaluation methods in both univariate and multivariate cases. Section 8 concludes briefly.

    Risk Management using Model Predictive Control

    Get PDF
    Forward planning and risk management are crucial for the success of any system or business dealing with the uncertainties of the real world. Previous approaches have largely assumed that the future will be similar to the past, or used simple forecasting techniques based on ad-hoc models. Improving solutions requires better projection of future events, and necessitates robust forward planning techniques that consider forecasting inaccuracies. This work advocates risk management through optimal control theory, and proposes several techniques to combine it with time-series forecasting. Focusing on applications in foreign exchange (FX) and battery energy storage systems (BESS), the contributions of this thesis are three-fold. First, a short-term risk management system for FX dealers is formulated as a stochastic model predictive control (SMPC) problem in which the optimal risk-cost profiles are obtained through dynamic control of the dealers’ positions on the spot market. Second, grammatical evolution (GE) is used to automate non-linear time-series model selection, validation, and forecasting. Third, a novel measure for evaluating forecasting models, as a part of the predictive model in finite horizon optimal control applications, is proposed. Using both synthetic and historical data, the proposed techniques were validated and benchmarked. It was shown that the stochastic FX risk management system exhibits better risk management on a risk-cost Pareto frontier compared to rule-based hedging strategies, with up to 44.7% lower cost for the same level of risk. Similarly, for a real-world BESS application, it was demonstrated that the GE optimised forecasting models outperformed other prediction models by at least 9%, improving the overall peak shaving capacity of the system to 57.6%

    Quantitative methods in high-frequency financial econometrics: modeling univariate and multivariate time series

    Get PDF
    corecore