370 research outputs found

    A survey of communication protocols for internet of things and related challenges of fog and cloud computing integration

    Get PDF
    The fast increment in the number of IoT (Internet of Things) devices is accelerating the research on new solutions to make cloud services scalable. In this context, the novel concept of fog computing as well as the combined fog-to-cloud computing paradigm is becoming essential to decentralize the cloud, while bringing the services closer to the end-system. This article surveys e application layer communication protocols to fulfill the IoT communication requirements, and their potential for implementation in fog- and cloud-based IoT systems. To this end, the article first briefly presents potential protocol candidates, including request-reply and publish-subscribe protocols. After that, the article surveys these protocols based on their main characteristics, as well as the main performance issues, including latency, energy consumption, and network throughput. These findings are thereafter used to place the protocols in each segment of the system (IoT, fog, cloud), and thus opens up the discussion on their choice, interoperability, and wider system integration. The survey is expected to be useful to system architects and protocol designers when choosing the communication protocols in an integrated IoT-to-fog-to-cloud system architecture.Peer ReviewedPostprint (author's final draft

    A Context-Aware Architecture for Smart Applications with Enabled Adaptation and Reasoning Capabilities

    Get PDF
    The term ''smart city'' refers to an instrumented, interconnected, and intelligent city built by leveraging Information and Communication Technologies (ICT). In such a city, a combination of embedded hardware and software involving sensors, actuators, and a host of mobile devices and wearables that are connected to the Internet of Things (IoT) networks will sense data in different contexts and automatically drive desired adaptations through actuators. Through adaptations, city planners, professionals, and researchers aim to optimize resource consumption and cost of providing services while improving the quality of life for the ever increasing urban population. To fully realize this goal, a context-aware and data-centric inference is a necessity. A system is said to be context-aware if it is able to adapt its operations to the current context without explicit user intervention. This thesis proposes a generic context-aware system architecture for development of smart city applications. The proposed architecture puts special emphasis on privacy and security, incorporating mechanisms to protect the system and sensitive information at each layer of the architecture. Furthermore, this architecture integrates with a reasoning component, whose inference engine can be driven by logic or other formalisms. A prototype implementation and a case study done in this thesis indicate the practical merits of the proposed architecture and provide a proof of concept

    Advances in Solid State Circuit Technologies

    Get PDF
    This book brings together contributions from experts in the fields to describe the current status of important topics in solid-state circuit technologies. It consists of 20 chapters which are grouped under the following categories: general information, circuits and devices, materials, and characterization techniques. These chapters have been written by renowned experts in the respective fields making this book valuable to the integrated circuits and materials science communities. It is intended for a diverse readership including electrical engineers and material scientists in the industry and academic institutions. Readers will be able to familiarize themselves with the latest technologies in the various fields

    Active gate drivers for high-frequency application of SiC MOSFETs

    Get PDF
    The trend in the development of power converters is focused on efficient systems with high power density, reliability and low cost. The challenges to cover the new power converters requirements are mainly concentered on the use of new switching-device technologies such as silicon carbide MOSFETs (SiC). SiC MOSFETs have better characteristics than their silicon counterparts; they have low conduction resistance, can work at higher switching speeds and can operate at higher temperature and voltage levels. Despite the advantages of SiC transistors, operating at high switching frequencies, with these devices, reveal new challenges. The fast switching speeds of SiC MOSFETs can cause over-voltages and over-currents that lead to electromagnetic interference (EMI) problems. For this reason, gate drivers (GD) development is a fundamental stage in SiC MOSFETs circuitry design. The reduction of the problems at high switching frequencies, thus increasing their performance, will allow to take advantage of these devices and achieve more efficient and high power density systems. This Thesis consists of a study, design and development of active gate drivers (AGDs) aimed to improve the switching performance of SiC MOSFETs applied to high-frequency power converters. Every developed stage regarding the GDs is validated through tests and experimental studies. In addition, the developed GDs are applied to converters for wireless charging systems of electric vehicle batteries. The results show the effectiveness of the proposed GDs and their viability in power converters based on SiC MOSFET devices.La tendencia en el diseño y desarrollo de convertidores de potencia está enfocada en realizar sistemas eficientes con alta densidad de potencia, fiabilidad y bajo costo. Los retos para cubrir esta tendencia están centrados principalmente en el uso de nuevas tecnologías de dispositivos de conmutación tales como, MOSFETs de carburo de silicio (SiC). Los MOSFETs de SiC presentan mejores características que sus homólogos de silicio; tienen baja resistencia de conducción, pueden trabajar a mayores velocidades de conmutación y pueden operar a mayores niveles de temperatura y tensión. A pesar de las ventajas de los transistores de SiC, existen problemas que se manifiestan cuando estos dispositivos operan a altas frecuencias de conmutación. Las rápidas velocidades de conmutación de los MOSFETs de SiC pueden provocar sobre-voltajes y sobre-corrientes que conllevan a problemas de interferencia electromagnética (EMI). Por tal motivo, el desarrollo de controladores de puertas es una etapa fundamental en los MOSFETs de SiC para eliminar los problemas a altas frecuencias de conmutación y aumentar su rendimiento. En consecuencia, aprovechar las ventajas de estos dispositivos y lograr sistemas más eficientes y con alta densidad de potencia. En esta tesis, se realiza un estudio, diseño y desarrollo de controladores activos de puerta para mejorar el rendimiento de conmutación de los MOSFETs de SiC aplicados a convertidores de potencia de alta frecuencia. Los controladores son validados a través de pruebas y estudios experimentales. Además, los controladores de puerta desarrollados son aplicados en convertidores para sistemas de carga inalámbrica de baterías de vehículos eléctricos. Los resultados muestran la importancia de los controladores de compuerta propuestos y su viabilidad en convertidores de potencia basados en carburo de silicio

    Enabling Multi-Mission Interoperable UAS Using Data-Centric Communications

    Get PDF
    We claim the strong potential of data-centric communications in Unmanned Aircraft Systems (UAS), as a suitable paradigm to enhance collaborative operations via efficient information sharing, as well as to build systems supporting flexible mission objectives. In particular, this paper analyzes the primary contributions to data dissemination in UAS that can be given by the Data Distribution Service (DDS) open standard, as a solid and industry-mature data-centric technology. Our study is not restricted to traditional UAS where a set of Unmanned Aerial Vehicles (UAVs) transmit data to the ground station that controls them. Instead, we contemplate flexible UAS deployments with multiple UAV units of different sizes and capacities, which are interconnected to form an aerial communication network, enabling the provision of value-added services over a delimited geographical area. In addition, the paper outlines an approach to address the issues inherent to the utilization of network-level multicast, a baseline technology in DDS, in the considered UAS deployments. We complete our analysis with a practical experience aiming at validating the feasibility and the advantages of using DDS in a multi-UAV deployment scenario. For this purpose, we use a UAS testbed built up by heterogeneous hardware equipment, including a number of interconnected micro aerial vehicles, carrying single board computers as payload, as well as real equipment from a tactical UAS from the Spanish Ministry of Defense.This article was partially supported by the European H2020 5GRANGE project (grant agreement 777137), and by the 5GCity project (TEC2016-76795-C6-3-R) funded by the SpanishMinistry of Economy and Competitiveness

    RF techniques for IEEE 802.15.4: circuit design and device modelling

    Get PDF
    The RF circuitry in the physical layer of any wireless communication node is arguably its most important part. The front-end radio is the hardware that enables communication by transmitting and receiving information. Without a robust and high performance front-end, all other higher layers of signal processing and data handling in a wireless network are irrelevant. This thesis investigates the radio circuitry of wireless-networked nodes, and introduces several proposals for improvement. As an emerging market, analysis starts by examining available and ratified network standards suitable for low power applications. After identifying the IEEE 802.15.4 standard (commercially known as ZigBee) as the one of choice, and analysing several front-end architectures on which its transceiver circuitry can be based, an application, the Tyre Pressure Monitoring System (TPMS) is selected to examine the capabilities of the standard and its most suitable architecture in satisfying the application’s requirements. From this compatibility analysis, the most significant shortcomings are identified as interference and power consumption. The work presented in this thesis focuses on the power consumption issues. A comparison of available high frequency transistor technologies concludes Silicon CMOS to be the most appropriate solution for the implementation of low cost and low power ZigBee transceivers. Since the output power requirement of ZigBee is relatively modest, it is possible to consider the design of a single amplifier block which can act as both a Low Noise Amplifier (LNA) in the receiver chain and a Power Amplifier (PA) on the transmitter side. This work shows that by employing a suitable design methodology, a single dual-function amplifier can be realised which meets the required performance specification. In this way, power consumption and chip area can both be reduced, leading to cost savings so vital to the widespread utilisation of the ZigBee standard. Given the importance of device nonlinearity in such a design, a new transistor model based on independent representation of each of the transistor’s nonlinear elements is developed with the aim of quantifying the individual contribution of each of the transistors nonlinear elements, to the total distortion. The methodology to the design of the dual functionality (LNA/PA) amplifier starts by considering various low noise amplifier architectures and comparing them in terms of the trade-off between noise (required for LNA operation) and linearity (important for PA operation), and then examining the behaviour of the selected architecture (the common-source common-gate cascode) at higher than usual input powers. Due to the need to meet the far apart performance requirements of both the LNA and PA, a unique amplifier design methodology is developed The design methodology is based on simultaneous graphical visualisation of the relationship between all relevant performance parameters and corresponding design parameters. A design example is then presented to demonstrate the effectiveness of the methodology and the quality of trade-offs it allows the designer to make. The simulated performance of the final amplifier satisfies both the requirements of ZigBee’s low noise and power amplification. At 2.4GHz, the amplifier is predicted to have 1.6dB Noise Figure (NF), 6dBm Input-referred 3rd-order Intercept Point (IIP3), and 1dB compression point of -3.5dBm. In low power operation, it is predicted to have 10dB gain, consuming only 8mW. At the higher input power of 0dBm, it is predicted to achieve 24% Power-Added Efficiency (PAE) with 8dB gain and 22mW power consumption. Finally, this thesis presents a set of future research proposals based on problems identified throughout its development

    Modelling of field-effect transistors based on 2D materials targeting high-frequency applications

    Get PDF
    New technologies are necessary for the unprecedented expansion of connectivity and communications in the modern technological society. The specific needs of wireless communication systems in 5G and beyond, as well as devices for the future deployment of Internet of Things has caused that the International Technology Roadmap for Semiconductors, which is the strategic planning document of the semiconductor industry, considered since 2011, graphene and related materials (GRMs) as promising candidates for the future of electronics. Graphene, a one-atom-thick of carbon, is a promising material for high-frequency applications due to its intrinsic superior carrier mobility and very high saturation velocity. These exceptional carrier transport properties suggest that GRM-based field-effect transistors could potentially outperform other technologies. This thesis presents a body of work on the modelling, performance prediction and simulation of GRM-based field-effect transistors and circuits. The main goal of this work is to provide models and tools to ease the following issues: (i) gaining technological control of single layer and bilayer graphene devices and, more generally, devices based on 2D materials, (ii) assessment of radio-frequency (RF) performance and microwave stability, (iii) benchmarking against other existing technologies, (iv) providing guidance for device and circuit design, (v) simulation of circuits formed by GRM-based transistors.Comment: Thesis, 164 pages, http://hdl.handle.net/10803/40531

    Inductorless LNA and Harmonic-rejection Mixer for Wideband Direct-conversion Receiver

    Get PDF
    In this master thesis, combinations of noise-canceling LNA and harmonic-rejection mixers are investigated and compared to find an optimal inductorless receiver front-end for low-band (600-960MHz) FDD LTE-A network. The work was carried out in a modem development project at Ericsson Modems, Lund. Three receiver versions with different harmonic rejection techniques are compared in terms of noise figure (NF) and power consumption and the receiver with 6 LO phases is selected for optimization. The LNA combines noise cancellation for matching stage and nonlinearity cancellation for output stages so both low noise figure and high linearity are achieved. The final circuit show great potential for FDD LTE-A system with support up to 3 aggregated carriers for higher bandwidth. Low NF at 1.62 dB after the LNA and 1.75 dB after the mixer are observed from 0.4-1GHz. The LNA IIP2 is above 12 dBm and robust with process and temperature. Gain switching with possible reduction of 6 and 12 dB is integrated and the LNA linearity is not significantly suffered by low gain. Input return loss (S11) is better than -12dB regardless of gain, number of carriers and temperature (-30 – 110°C). Inductorless operation saves a lot of chip area and avoid dead package area, which then save cost and make the solution competitive.This master’s thesis done at Ericsson Modem aimed to investigate an inductorless receiver front-end for low-band LTE-A user terminals. The circuit combined noise-canceling technique and push-pull stage for LNA and harmonic-rejection technique for mixer, so three main issues of inductorless operation are solved. The issues include LNA noise and linearity, and noise folding effect caused by 3rd harmonics of LO signals
    corecore