145 research outputs found

    Designing Tactile Interfaces for Abstract Interpersonal Communication, Pedestrian Navigation and Motorcyclists Navigation

    Get PDF
    The tactile medium of communication with users is appropriate for displaying information in situations where auditory and visual mediums are saturated. There are situations where a subject's ability to receive information through either of these channels is severely restricted by the environment they are in or through any physical impairments that the subject may have. In this project, we have focused on two groups of users who need sustained visual and auditory focus in their task: Soldiers on the battle field and motorcyclists. Soldiers on the battle field use their visual and auditory capabilities to maintain awareness of their environment to guard themselves from enemy assault. One of the major challenges to coordination in a hazardous environment is maintaining communication between team members while mitigating cognitive load. Compromise in communication between team members may result in mistakes that can adversely affect the outcome of a mission. We have built two vibrotactile displays, Tactor I and Tactor II, each with nine actuators arranged in a three-by-three matrix with differing contact areas that can represent a total of 511 shapes. We used two dimensions of tactile medium, shapes and waveforms, to represent verb phrases and evaluated ability of users to perceive verb phrases the tactile code. We evaluated the effectiveness of communicating verb phrases while the users were performing two tasks simultaneously. The results showed that performing additional visual task did not affect the accuracy or the time taken to perceive tactile codes. Another challenge in coordinating Soldiers on a battle field is navigating them to respective assembly areas. We have developed HaptiGo, a lightweight haptic vest that provides pedestrians both navigational intelligence and obstacle detection capabilities. HaptiGo consists of optimally-placed vibro-tactile sensors that utilize natural and small form factor interaction cues, thus emulating the sensation of being passively guided towards the intended direction. We evaluated HaptiGo and found that it was able to successfully navigate users with timely alerts of incoming obstacles without increasing cognitive load, thereby increasing their environmental awareness. Additionally, we show that users are able to respond to directional information without training. The needs of motorcyclists are di erent from those of Soldiers. Motorcyclists' need to maintain visual and auditory situational awareness at all times is crucial since they are highly exposed on the road. Route guidance systems, such as the Garmin, have been well tested on automobilists, but remain much less safe for use by motorcyclists. Audio/visual routing systems decrease motorcyclists' situational awareness and vehicle control, and thus increase the chances of an accident. To enable motorcyclists to take advantage of route guidance while maintaining situational awareness, we created HaptiMoto, a wearable haptic route guidance system. HaptiMoto uses tactile signals to encode the distance and direction of approaching turns, thus avoiding interference with audio/visual awareness. Evaluations show that HaptiMoto is intuitive for motorcyclists, and a safer alternative to existing solutions

    Principles and Guidelines for Advancement of Touchscreen-Based Non-visual Access to 2D Spatial Information

    Get PDF
    Graphical materials such as graphs and maps are often inaccessible to millions of blind and visually-impaired (BVI) people, which negatively impacts their educational prospects, ability to travel, and vocational opportunities. To address this longstanding issue, a three-phase research program was conducted that builds on and extends previous work establishing touchscreen-based haptic cuing as a viable alternative for conveying digital graphics to BVI users. Although promising, this approach poses unique challenges that can only be addressed by schematizing the underlying graphical information based on perceptual and spatio-cognitive characteristics pertinent to touchscreen-based haptic access. Towards this end, this dissertation empirically identified a set of design parameters and guidelines through a logical progression of seven experiments. Phase I investigated perceptual characteristics related to touchscreen-based graphical access using vibrotactile stimuli, with results establishing three core perceptual guidelines: (1) a minimum line width of 1mm should be maintained for accurate line-detection (Exp-1), (2) a minimum interline gap of 4mm should be used for accurate discrimination of parallel vibrotactile lines (Exp-2), and (3) a minimum angular separation of 4mm should be used for accurate discrimination of oriented vibrotactile lines (Exp-3). Building on these parameters, Phase II studied the core spatio-cognitive characteristics pertinent to touchscreen-based non-visual learning of graphical information, with results leading to the specification of three design guidelines: (1) a minimum width of 4mm should be used for supporting tasks that require tracing of vibrotactile lines and judging their orientation (Exp-4), (2) a minimum width of 4mm should be maintained for accurate line tracing and learning of complex spatial path patterns (Exp-5), and (3) vibrotactile feedback should be used as a guiding cue to support the most accurate line tracing performance (Exp-6). Finally, Phase III demonstrated that schematizing line-based maps based on these design guidelines leads to development of an accurate cognitive map. Results from Experiment-7 provide theoretical evidence in support of learning from vision and touch as leading to the development of functionally equivalent amodal spatial representations in memory. Findings from all seven experiments contribute to new theories of haptic information processing that can guide the development of new touchscreen-based non-visual graphical access solutions

    Design of Cognitive Interfaces for Personal Informatics Feedback

    Get PDF

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Exploitation of haptic renderings to communicate risk levels of falling

    Get PDF
    Falls represent a major cause of injury that could lead to death. This observation is even more accentuated in the elderly. Indeed, with aging comes some deterioration (gait disturbances, balance disorders, and sensory motor impairments) that may lead to falls. The research project presented in this thesis is focused on the problem of reducing the risk level of falling. This study proposes a solution for the communication of haptic information to reduce the risk of falling. This solution is part of the design of a haptic communication system in a controlled environment. This new system introduces the notion of haptic perception through the communication of information by touch using the foot, which the literature does not generally mention. For the design of this system, we first studied the use of tactile stimuli to evaluate the possibility of communicating a risk level through a haptic modality. Then, having hypothesized that some factors could influence the communication of stimuli representing the risk levels of falling, we conducted a second study to evaluate the effect of auditory disturbances during the communication of these stimuli. Third, to determine whether the user had the necessary time to act after the perception of the risk level, we analyzed a variation of the simple reaction time when walking on different types of soil. These results encouraged us to do a fourth assessment of reaction time using a new device coupled with a smartphone that can be positioned at different locations on the body. Several experiments have been done to validate each of the steps. With this, we can now communicate a risk level of falling to users through the haptic channel using an active device and easily differentiable stimuli. In addition, we can evaluate auditory factors during such a haptic perception. Finally, we can evaluate the physiological characteristics of the users (response time) while seated and while walking on different types of soil. Les chutes représentent une cause majeure de blessures pouvant entraîner la mort. Cette observation est encore plus accentuée chez les personnes âgées. En effet, avec le vieillissement, certaines détériorations (troubles de la démarche, troubles de l’équilibre, troubles sensorimoteurs) peuvent entraîner des chutes. Le projet de recherche présenté dans cette thèse fait partie du problème de la réduction du risque de chute. En particulier, cette étude propose une solution au problème de la réduction du risque de chute par la perception haptiques. Cette solution intègre la conception d’un système de communication haptique dans un environnement contrôlé. Ce nouveau système introduit la notion de perception haptique à travers la communication de l’information par le toucher avec le pied, que la littérature ne mentionne généralement pas. Pour cela nous avons d’abord étudié l’utilisation de stimuli tactiles pour évaluer la possibilité de communiquer un niveau de risque par la modalité haptique. Puis, ayant émis l’hypothèse que certains facteurs pourraient influencer la communication de ces stimuli, nous avons mené une deuxième étude pour évaluer l’impact des perturbations auditives lors de la perception haptique du niveau de risque. Troisièmement, afin de savoir si l’utilisateur avait le temps nécessaire pour agir après la perception du niveau de risque, nous avons analysé la variation du temps de réaction simple en marchant sur différents types de sols. Les résultats obtenus dans cette dernière étude nous ont motivé à faire une quatrième évaluation du temps de réaction mais en utilisant un nouveau dispositif couplé à un smartphone qui peut être positionné à différents endroits du corps. Plusieurs expériences ont été réalisées pour valider chacune des étapes. Avec toutes ces études, nous pouvons maintenant communiquer aux utilisateurs un niveau de risque à travers le canal haptique en utilisant un dispositif actif et des stimuli facilement différentiables. En outre, nous pouvons évaluer les facteurs externes (auditifs) au cours d’une telle perception haptique. Enfin, nous pouvons évaluer les caractéristiques physiologiques des utilisateurs (temps de réponse) en position assise et en marchant sur différents types de sols

    Impact of auditory distractions on haptic messages presented under the foot

    Get PDF
    When compared to vision and audition, communication capabilities of the haptic channel remain underexploited. In this paper, we investigate the impact of auditory distractions on the learning of haptic messages presented under the foot plantar. From a set of six haptic messages that have been designed in order to be easily differentiable one from another, participants have to select four. With and without the presence of auditory distractions, we evaluate the completion time and the number of iteration required to reach an identification rate greater than 95%. For both measures, we observed that having auditory distractions was detrimental to the performances of users

    The cockpit for the 21st century

    Get PDF
    Interactive surfaces are a growing trend in many domains. As one possible manifestation of Mark Weiser’s vision of ubiquitous and disappearing computers in everywhere objects, we see touchsensitive screens in many kinds of devices, such as smartphones, tablet computers and interactive tabletops. More advanced concepts of these have been an active research topic for many years. This has also influenced automotive cockpit development: concept cars and recent market releases show integrated touchscreens, growing in size. To meet the increasing information and interaction needs, interactive surfaces offer context-dependent functionality in combination with a direct input paradigm. However, interfaces in the car need to be operable while driving. Distraction, especially visual distraction from the driving task, can lead to critical situations if the sum of attentional demand emerging from both primary and secondary task overextends the available resources. So far, a touchscreen requires a lot of visual attention since its flat surface does not provide any haptic feedback. There have been approaches to make direct touch interaction accessible while driving for simple tasks. Outside the automotive domain, for example in office environments, concepts for sophisticated handling of large displays have already been introduced. Moreover, technological advances lead to new characteristics for interactive surfaces by enabling arbitrary surface shapes. In cars, two main characteristics for upcoming interactive surfaces are largeness and shape. On the one hand, spatial extension is not only increasing through larger displays, but also by taking objects in the surrounding into account for interaction. On the other hand, the flatness inherent in current screens can be overcome by upcoming technologies, and interactive surfaces can therefore provide haptically distinguishable surfaces. This thesis describes the systematic exploration of large and shaped interactive surfaces and analyzes their potential for interaction while driving. Therefore, different prototypes for each characteristic have been developed and evaluated in test settings suitable for their maturity level. Those prototypes were used to obtain subjective user feedback and objective data, to investigate effects on driving and glance behavior as well as usability and user experience. As a contribution, this thesis provides an analysis of the development of interactive surfaces in the car. Two characteristics, largeness and shape, are identified that can improve the interaction compared to conventional touchscreens. The presented studies show that large interactive surfaces can provide new and improved ways of interaction both in driver-only and driver-passenger situations. Furthermore, studies indicate a positive effect on visual distraction when additional static haptic feedback is provided by shaped interactive surfaces. Overall, various, non-exclusively applicable, interaction concepts prove the potential of interactive surfaces for the use in automotive cockpits, which is expected to be beneficial also in further environments where visual attention needs to be focused on additional tasks.Der Einsatz von interaktiven Oberflächen weitet sich mehr und mehr auf die unterschiedlichsten Lebensbereiche aus. Damit sind sie eine mögliche Ausprägung von Mark Weisers Vision der allgegenwärtigen Computer, die aus unserer direkten Wahrnehmung verschwinden. Bei einer Vielzahl von technischen Geräten des täglichen Lebens, wie Smartphones, Tablets oder interaktiven Tischen, sind berührungsempfindliche Oberflächen bereits heute in Benutzung. Schon seit vielen Jahren arbeiten Forscher an einer Weiterentwicklung der Technik, um ihre Vorteile auch in anderen Bereichen, wie beispielsweise der Interaktion zwischen Mensch und Automobil, nutzbar zu machen. Und das mit Erfolg: Interaktive Benutzeroberflächen werden mittlerweile serienmäßig in vielen Fahrzeugen eingesetzt. Der Einbau von immer größeren, in das Cockpit integrierten Touchscreens in Konzeptfahrzeuge zeigt, dass sich diese Entwicklung weiter in vollem Gange befindet. Interaktive Oberflächen ermöglichen das flexible Anzeigen von kontextsensitiven Inhalten und machen eine direkte Interaktion mit den Bildschirminhalten möglich. Auf diese Weise erfüllen sie die sich wandelnden Informations- und Interaktionsbedürfnisse in besonderem Maße. Beim Einsatz von Bedienschnittstellen im Fahrzeug ist die gefahrlose Benutzbarkeit während der Fahrt von besonderer Bedeutung. Insbesondere visuelle Ablenkung von der Fahraufgabe kann zu kritischen Situationen führen, wenn Primär- und Sekundäraufgaben mehr als die insgesamt verfügbare Aufmerksamkeit des Fahrers beanspruchen. Herkömmliche Touchscreens stellen dem Fahrer bisher lediglich eine flache Oberfläche bereit, die keinerlei haptische Rückmeldung bietet, weshalb deren Bedienung besonders viel visuelle Aufmerksamkeit erfordert. Verschiedene Ansätze ermöglichen dem Fahrer, direkte Touchinteraktion für einfache Aufgaben während der Fahrt zu nutzen. Außerhalb der Automobilindustrie, zum Beispiel für Büroarbeitsplätze, wurden bereits verschiedene Konzepte für eine komplexere Bedienung großer Bildschirme vorgestellt. Darüber hinaus führt der technologische Fortschritt zu neuen möglichen Ausprägungen interaktiver Oberflächen und erlaubt, diese beliebig zu formen. Für die nächste Generation von interaktiven Oberflächen im Fahrzeug wird vor allem an der Modifikation der Kategorien Größe und Form gearbeitet. Die Bedienschnittstelle wird nicht nur durch größere Bildschirme erweitert, sondern auch dadurch, dass Objekte wie Dekorleisten in die Interaktion einbezogen werden können. Andererseits heben aktuelle Technologieentwicklungen die Restriktion auf flache Oberflächen auf, so dass Touchscreens künftig ertastbare Strukturen aufweisen können. Diese Dissertation beschreibt die systematische Untersuchung großer und nicht-flacher interaktiver Oberflächen und analysiert ihr Potential für die Interaktion während der Fahrt. Dazu wurden für jede Charakteristik verschiedene Prototypen entwickelt und in Testumgebungen entsprechend ihres Reifegrads evaluiert. Auf diese Weise konnten subjektives Nutzerfeedback und objektive Daten erhoben, und die Effekte auf Fahr- und Blickverhalten sowie Nutzbarkeit untersucht werden. Diese Dissertation leistet den Beitrag einer Analyse der Entwicklung von interaktiven Oberflächen im Automobilbereich. Weiterhin werden die Aspekte Größe und Form untersucht, um mit ihrer Hilfe die Interaktion im Vergleich zu herkömmlichen Touchscreens zu verbessern. Die durchgeführten Studien belegen, dass große Flächen neue und verbesserte Bedienmöglichkeiten bieten können. Außerdem zeigt sich ein positiver Effekt auf die visuelle Ablenkung, wenn zusätzliches statisches, haptisches Feedback durch nicht-flache Oberflächen bereitgestellt wird. Zusammenfassend zeigen verschiedene, untereinander kombinierbare Interaktionskonzepte das Potential interaktiver Oberflächen für den automotiven Einsatz. Zudem können die Ergebnisse auch in anderen Bereichen Anwendung finden, in denen visuelle Aufmerksamkeit für andere Aufgaben benötigt wird

    Ubiquitäre Systeme (Seminar) und Mobile Computing (Proseminar) WS 2016/17. Mobile und Verteilte Systeme. Ubiquitous Computing. Teil XIV

    Get PDF
    Diese Arbeit wird einen Überblick über virtuelle intelligente Assistenten (VIA), die im deutschen auch oft als Sprachassistenten bezeichnet werden, geben. Es werden die verschiedenen Arten von VIA gezeigt und in welchem Zusammenhang sie momentan schon genutzt werden. Als Beispiel werden einige aktuelle Assistenten dienen. Zudem werden neben den Möglichkeiten der Programme, auch noch die Grenzen dieser Technik dargestellt und mögliche Verbesserungen und Optimierungen für die Zukunft besprochen. Ebenfalls wird das empfindliche Thema Datenschutz mit Bezug auf die VIA behandelt. Am Ende des zweiten Teils gehen wir auf die aktuelle Beliebtheit und Nutzung der Anwendungen ein. Im dritten Abschnitt wird dann die Funktionsweise der Software im Hintergrund der Assistenten betrachtet. Es wird der allgemeine Aufbau eines VIA skizziert. Zudem werden zwei Modelle für die Arbeitsweise der Sprachassistenten betrachtet. Dazu werden auch einige theoretische Konzepte wie Ontologien, Knowledge Graphen und POMDP (partially observable Markov decision process) beleuchtet. Zum Schluss kommt ein Fazit über die weitere Entwicklung der VIA mit Überlegungen für Verbesserungen und Optimierungen

    Spatial representation and visual impairement - Developmental trends and new technological tools for assessment and rehabilitation

    Get PDF
    It is well known that perception is mediated by the five sensory modalities (sight, hearing, touch, smell and taste), which allows us to explore the world and build a coherent spatio-temporal representation of the surrounding environment. Typically, our brain collects and integrates coherent information from all the senses to build a reliable spatial representation of the world. In this sense, perception emerges from the individual activity of distinct sensory modalities, operating as separate modules, but rather from multisensory integration processes. The interaction occurs whenever inputs from the senses are coherent in time and space (Eimer, 2004). Therefore, spatial perception emerges from the contribution of unisensory and multisensory information, with a predominant role of visual information for space processing during the first years of life. Despite a growing body of research indicates that visual experience is essential to develop spatial abilities, to date very little is known about the mechanisms underpinning spatial development when the visual input is impoverished (low vision) or missing (blindness). The thesis's main aim is to increase knowledge about the impact of visual deprivation on spatial development and consolidation and to evaluate the effects of novel technological systems to quantitatively improve perceptual and cognitive spatial abilities in case of visual impairments. Chapter 1 summarizes the main research findings related to the role of vision and multisensory experience on spatial development. Overall, such findings indicate that visual experience facilitates the acquisition of allocentric spatial capabilities, namely perceiving space according to a perspective different from our body. Therefore, it might be stated that the sense of sight allows a more comprehensive representation of spatial information since it is based on environmental landmarks that are independent of body perspective. Chapter 2 presents original studies carried out by me as a Ph.D. student to investigate the developmental mechanisms underpinning spatial development and compare the spatial performance of individuals with affected and typical visual experience, respectively visually impaired and sighted. Overall, these studies suggest that vision facilitates the spatial representation of the environment by conveying the most reliable spatial reference, i.e., allocentric coordinates. However, when visual feedback is permanently or temporarily absent, as in the case of congenital blindness or blindfolded individuals, respectively, compensatory mechanisms might support the refinement of haptic and auditory spatial coding abilities. The studies presented in this chapter will validate novel experimental paradigms to assess the role of haptic and auditory experience on spatial representation based on external (i.e., allocentric) frames of reference. Chapter 3 describes the validation process of new technological systems based on unisensory and multisensory stimulation, designed to rehabilitate spatial capabilities in case of visual impairment. Overall, the technological validation of new devices will provide the opportunity to develop an interactive platform to rehabilitate spatial impairments following visual deprivation. Finally, Chapter 4 summarizes the findings reported in the previous Chapters, focusing the attention on the consequences of visual impairment on the developmental of unisensory and multisensory spatial experience in visually impaired children and adults compared to sighted peers. It also wants to highlight the potential role of novel experimental tools to validate the use to assess spatial competencies in response to unisensory and multisensory events and train residual sensory modalities under a multisensory rehabilitation
    • …
    corecore