1,158 research outputs found

    Automatically Discovering, Reporting and Reproducing Android Application Crashes

    Full text link
    Mobile developers face unique challenges when detecting and reporting crashes in apps due to their prevailing GUI event-driven nature and additional sources of inputs (e.g., sensor readings). To support developers in these tasks, we introduce a novel, automated approach called CRASHSCOPE. This tool explores a given Android app using systematic input generation, according to several strategies informed by static and dynamic analyses, with the intrinsic goal of triggering crashes. When a crash is detected, CRASHSCOPE generates an augmented crash report containing screenshots, detailed crash reproduction steps, the captured exception stack trace, and a fully replayable script that automatically reproduces the crash on a target device(s). We evaluated CRASHSCOPE's effectiveness in discovering crashes as compared to five state-of-the-art Android input generation tools on 61 applications. The results demonstrate that CRASHSCOPE performs about as well as current tools for detecting crashes and provides more detailed fault information. Additionally, in a study analyzing eight real-world Android app crashes, we found that CRASHSCOPE's reports are easily readable and allow for reliable reproduction of crashes by presenting more explicit information than human written reports.Comment: 12 pages, in Proceedings of 9th IEEE International Conference on Software Testing, Verification and Validation (ICST'16), Chicago, IL, April 10-15, 2016, pp. 33-4

    Towards Better Static Analysis Security Testing Methodologies

    Get PDF
    Software vulnerabilities have been a significant attack surface used in cyberattacks, which have been escalating recently. Software vulnerabilities have caused substantial damage, and thus there are many techniques to guard against them. Nevertheless, detecting and eliminating software vulnerabilities from the source code is the best and most effective solution in terms of protection and cost. Static Analysis Security Testing (SAST) tools spot vulnerabilities and help programmers to remove the vulnerabilities. The fundamental problem is that modern software continues to evolve and shift, making detecting vulnerabilities more difficult. Hence, this thesis takes a step toward highlighting the features required to be present in the SAST tools to address software vulnerabilities in modern software. The thesis’s end goal is to introduce SAST methods and tools to detect the dominant type of software vulnerabilities in modern software. The investigation first focuses on state-of-theart SAST tools when working with large-scale modern software. The research examines how different state-of-the-art SAST tools react to different types of warnings over time, and measures SAST tools precision of different types of warnings. The study presumption is that the SAST tools’ precision can be obtained from studying real-world projects’ history and SAST tools that generated warnings over time. The empirical analysis in this study then takes a further step to look at the problem from a different angle, starting at the real-world vulnerabilities detected by individuals and published in well-known vulnerabilities databases. Android application vulnerabilities are used as an example of modern software vulnerabilities. This study aims to measure the recall of SAST tools when they work with modern software vulnerabilities and understand how software vulnerabilities manifest in the real world. We find that buffer errors that belong to the input validation and representation class of vulnerability dominate modern software. Also, we find that studied state-of-the-art SAST tools failed to identify real-world vulnerabilities. To address the issue of detecting vulnerabilities in modern software, we introduce two methodologies. The first methodology is a coarse-grain method that targets helping taint static analysis methods to tackle two aspects of the complexity of modern software. One aspect is that one vulnerability can be scattered across different languages in a single application making the analysis harder to achieve. The second aspect is that the number of sources and sinks is high and increasing over time, which can be hard for taint analysis to cover such a high number of sources and sinks. We implement the proposed methodology in a tool called Source Sink (SoS) that filters out the source and sink pairs that do not have feasible paths. Then, another fine-grain methodology focuses on discovering buffer errors that occur in modern software. The method performs taint analysis to examine the reachability between sources and sinks and looks for "validators" that validates the untrusted input. We implemented methodology in a tool called Buffer Error Finder (BEFinder)

    Towards Principled Dynamic Analysis on Android

    Get PDF
    The vast amount of information and services accessible through mobile handsets running the Android operating system has led to the tight integration of such devices into our daily routines. However, their capability to capture and operate upon user data provides an unprecedented insight into our private lives that needs to be properly protected, which demands for comprehensive analysis and thorough testing. While dynamic analysis has been applied to these problems in the past, the corresponding literature consists of scattered work that often specializes on sub-problems and keeps on re-inventing the wheel, thus lacking a structured approach. To overcome this unsatisfactory situation, this dissertation introduces two major systems that advance the state-of-the-art of dynamically analyzing the Android platform. First, we introduce a novel, fine-grained and non-intrusive compiler-based instrumentation framework that allows for precise and high-performance modification of Android apps and system components. Second, we present a unifying dynamic analysis platform with a special focus on Android’s middleware in order to overcome the common challenges we identified from related work. Together, these two systems allow for a more principled approach for dynamic analysis on Android that enables comparability and composability of both existing and future work.Die enorme Menge an Informationen und Diensten, die durch mobile Endgeräte mit dem Android Betriebssystem zugänglich gemacht werden, hat zu einer verstärkten Einbindung dieser Geräte in unseren Alltag geführt. Gleichzeitig erlauben die dabei verarbeiteten Benutzerdaten einen beispiellosen Einblick in unser Privatleben. Diese Informationen müssen adäquat geschützt werden, was umfassender Analysen und gründlicher Prüfung bedarf. Dynamische Analysetechniken, die in der Vergangenheit hier bereits angewandt wurden, fokussieren sich oftmals auf Teilprobleme und reimplementieren regelmäßig bereits existierende Komponenten statt einen strukturierten Ansatz zu verfolgen. Zur Überwindung dieser unbefriedigenden Situation stellt diese Dissertation zwei Systeme vor, die den Stand der Technik dynamischer Analyse der Android Plattform erweitern. Zunächst präsentieren wir ein compilerbasiertes, feingranulares und nur geringfügig eingreifendes Instrumentierungsframework für präzises und performantes Modifizieren von Android Apps und Systemkomponenten. Anschließend führen wir eine auf die Android Middleware spezialisierte Plattform zur Vereinheitlichung von dynamischer Analyse ein, um die aus existierenden Arbeiten extrahierten, gemeinsamen Herausforderungen in diesem Gebiet zu überwinden. Zusammen erlauben diese beiden Systeme einen prinzipienorientierten Ansatz zur dynamischen Analyse, welcher den Vergleich und die Zusammenführung existierender und zukünftiger Arbeiten ermöglicht

    Demystifying security and compatibility issues in Android Apps

    Full text link
    Never before has any OS been so popular as Android. Existing mobile phones are not simply devices for making phone calls and receiving SMS messages, but powerful communication and entertainment platforms for web surfing, social networking, etc. Even though the Android OS offers powerful communication and application execution capabilities, it is riddled with defects (e.g., security risks, and compatibility issues), new vulnerabilities come to light daily, and bugs cost the economy tens of billions of dollars annually. For example, malicious apps (e.g., back-doors, fraud apps, ransomware, spyware, etc.) are reported [Google, 2022] to exhibit malicious behaviours, including privacy stealing, unwanted programs installed, etc. To counteract these threats, many works have been proposed that rely on static analysis techniques to detect such issues. However, static techniques are not sufficient on their own to detect such defects precisely. This will likely yield false positive results as static analysis has to make some trade-offs when handling complicated cases (e.g., object-sensitive vs. object-insensitive). In addition, static analysis techniques will also likely suffer from soundness issues because some complicated features (e.g., reflection, obfuscation, and hardening) are difficult to be handled [Sun et al., 2021b, Samhi et al., 2022].Comment: Thesi

    Mobile Application Security Platforms Survey

    Get PDF
    Nowadays Smartphone and other mobile devices have become incredibly important in every aspect of our life. Because they have practically offered same capabilities as desktop workstations as well as come to be powerful in terms of CPU (Central processing Unit), Storage and installing numerous applications. Therefore, Security is considered as an important factor in wireless communication technologies, particularly in a wireless ad-hoc network and mobile operating systems. Moreover, based on increasing the range of mobile application within variety of platforms, security is regarded as on the most valuable and considerable debate in terms of issues, trustees, reliabilities and accuracy. This paper aims to introduce a consolidated report of thriving security on mobile application platforms and providing knowledge of vital threats to the users and enterprises. Furthermore, in this paper, various techniques as well as methods for security measurements, analysis and prioritization within the peak of mobile platforms will be presented. Additionally, increases understanding and awareness of security on mobile application platforms to avoid detection, forensics and countermeasures used by the operating systems. Finally, this study also discusses security extensions for popular mobile platforms and analysis for a survey within a recent research in the area of mobile platform security

    Understanding the Evolution of Android App Vulnerabilities

    Get PDF
    The Android ecosystem today is a growing universe of a few billion devices, hundreds of millions of users and millions of applications targeting a wide range of activities where sensitive information is collected and processed. Security of communication and privacy of data are thus of utmost importance in application development. Yet, regularly, there are reports of successful attacks targeting Android users. While some of those attacks exploit vulnerabilities in the Android OS, others directly concern application-level code written by a large pool of developers with varying experience. Recently, a number of studies have investigated this phenomenon, focusing however only on a specific vulnerability type appearing in apps, and based on only a snapshot of the situation at a given time. Thus, the community is still lacking comprehensive studies exploring how vulnerabilities have evolved over time, and how they evolve in a single app across developer updates. Our work fills this gap by leveraging a data stream of 5 million app packages to re-construct versioned lineages of Android apps and finally obtained 28;564 app lineages (i.e., successive releases of the same Android apps) with more than 10 app versions each, corresponding to a total of 465;037 apks. Based on these app lineages, we apply state-of- the-art vulnerability-finding tools and investigate systematically the reports produced by each tool. In particular, we study which types of vulnerabilities are found, how they are introduced in the app code, where they are located, and whether they foreshadow malware. We provide insights based on the quantitative data as reported by the tools, but we further discuss the potential false positives. Our findings and study artifacts constitute a tangible knowledge to the community. It could be leveraged by developers to focus verification tasks, and by researchers to drive vulnerability discovery and repair research efforts

    Towards model checking Android applications

    Get PDF
    As feature-rich Android applications (apps for short) are increasingly popularized in security-sensitive scenarios, methods to verify their security properties are highly desirable. Existing approaches on verifying Android apps often have limited effectiveness. For instance, static analysis often suffers from a high false-positive rate, whereas approaches based on dynamic testing are limited in coverage. In this work, we propose an alternative approach, which is to apply the software model checking technique to verify Android apps. We have built a general framework named DroidPF upon Java PathFinder (JPF), towards model checking Android apps. In the framework, we craft an executable mock-up Android OS which enables JPF to dynamically explore the concrete state spaces of the tested apps; we construct programs to generate user interaction and environmental input so as to drive the dynamic execution of the apps; and we introduce Android specific reduction techniques to help alleviate the state space explosion. DroidPF focuses on common security vulnerabilities in Android apps including sensitive data leakage involving a non-trivial flow- and context-sensitive taint-style analysis. DroidPF has been evaluated with 131 apps, which include real-world apps, third-party libraries, malware samples and benchmarks for evaluating app analysis techniques like ours. DroidPF precisely identifies nearly all of the previously known security issues and nine previously unreported vulnerabilities/bugs.NRF (Natl Research Foundation, S’pore

    Intelligent Android malware family classification using Genetic Algorithms and SVM

    Get PDF
    As of April 2019, Android was the most popular mobile operating system amongst smartphone users[1]. Its high popularity, combined with the extended use of smartphones for everyday tasks as well as storing or accessing sensitive and personal data, has made Android applications the target of numerous malware attacks over the last few years and in the present. The malware attacks have been perfected to target specific vulnerabilities in the operating system or the user; thus specializing in types of malware and families within each type. The malware is usually distributed in infected applications (or APKs), which contain malicious behaviours that can be found looking into their code (known as static analysis) or analysing the behaviour of the application while running (known as dynamic analysis). This document describes the implementation of an intelligent system that aims to classify a series of malicious APK samples obtained from the free repository ContagioDump. These samples are classified inside the type and family they belong to. To create the classifier system, a Support Vector Machine (SVM) is implemented using Python’s library Scikit Learn. A series of attributes are extracted from the samples of malicious APK by analysing the code of the APKs via static analysis, using Python’s library Androguard, which contains a parser that allows to interact with all the relevant parts of the APK file. The attributes obtained are very high in number, and for that reason a Genetic Algorithm is used to optimize the attributes that the SVM uses in the learning process. The algorithm codifies a subset of attributes from all the attributes extracted in the static analysis, and is evaluated using the accuracy score obtained when training the SVM with said subset. As a result, a subset of attributes and a trained model for the classification are obtained. This model is then tested with a new set of malware samples, belonging to all the families classified in the learning. The present document contains the explanation of the process of designing, creating and testing the system. It is developed as bachelor’s thesis for computer science and engineering degree in Universidad Carlos III de Madrid.Ingeniería en Tecnologías de Telecomunicación (Plan 2010
    • …
    corecore