30 research outputs found

    Kinematic directional index for the performance of redundant manipulators

    Get PDF
    Performance indexes are a powerful tool to evaluate the behavior of industrial manipulators throughout their workspace and improve their performance. When dealing with intrinsically redundant manipulators, the additional joint influences their performance; hence, it is fundamental to consider the influence of the redundant joint when evaluating the performance index. This work improves the formulation of the kinematic directional index (KDI) by considering redundant manipulators. The KDI represents an improvement over traditional indexes, as it takes into account the direction of motion when evaluating the performance of a manipulator. However, in its current formulation, it is not suitable for redundant manipulators. Therefore, we extend the index to redundant manipulators. This is achieved by adopting a geometric approach that allows identifying the appropriate redundancy to maximize the velocity of a serial manipulator along the direction of motion. This approach is applied to a 4-degree-of-freedom (DOF) planar redundant manipulator and a 7-DOF spatial articulated one. Experimental validation for the articulated robot is presented, demonstrating the effectiveness of the proposed method and its advantages

    A Holistic Approach to Human-Supervised Humanoid Robot Operations in Extreme Environments

    Get PDF
    Nuclear energy will play a critical role in meeting clean energy targets worldwide. However, nuclear environments are dangerous for humans to operate in due to the presence of highly radioactive materials. Robots can help address this issue by allowing remote access to nuclear and other highly hazardous facilities under human supervision to perform inspection and maintenance tasks during normal operations, help with clean-up missions, and aid in decommissioning. This paper presents our research to help realize humanoid robots in supervisory roles in nuclear environments. Our research focuses on National Aeronautics and Space Administration (NASA’s) humanoid robot, Valkyrie, in the areas of constrained manipulation and motion planning, increasing stability using support contact, dynamic non-prehensile manipulation, locomotion on deformable terrains, and human-in-the-loop control interfaces

    On-line force capability evaluation based on efficient polytope vertex search

    Get PDF
    International audienceEllipsoid-based manipulability measures are often used to characterize the force/velocity task-space capabilities of robots. While computationally simple, this approach largely approximate and underestimate the true capabilities. Force/velocity polytopes appear to be a more appropriate representation to characterize the robot's task-space capabilities. However, due to the computational complexity of the associated vertex search problem, the polytope approach is mostly restricted to offline use, e.g. as a tool aiding robot mechanical design, robot placement in work-space and offline trajectory planning. In this paper, a novel on-line polytope vertex search algorithm is proposed. It exploits the parallelotope geometry of actuator constraints. The proposed algorithm significantly reduces the complexity and computation time of the vertex search problem in comparison to commonly used algorithms. In order to highlight the on-line capability of the proposed algorithm and its potential for robot control, a challenging experiment with two collaborating Franka Emika Panda robots, carrying a load of 12 kilograms, is proposed. In this experiment, the load distribution is adapted on-line, as a function of the configuration dependant task-space force capability of each robot, in order to avoid, as much as possible, the saturation of their capacit

    Manipulability in trajectory tracking for constrained redundant manipulators via sequential quadratic programming

    Get PDF
    Trajectory tracking methods for constrained redundant manipulators are presented in this thesis, where the end-effector of a redundant serial manipulator has to track a desired trajectory while some points on its kinematic chain satisfy one or more constraints. In addition, two manipulability indexes are taken into account in order to optimize the trajectory. The first index is defined in terms of the geometric Jacobian of the manipulator in the constrained configuration. The second index is based on the constrained Jacobian, which maps velocities from joint space to task space, taking into account the holonomic constraints. Three methods for solving the trajectory tracking problem are discussed. The first two, kinematic control (KC) and quadratic programming (QP), are widely discussed in literature. The third, sequential quadratic programming (SQP), is a new approach, unlike KC or QP, has as advantages (despite some shortcomings) not explicitly depend on pseudoinverse Jacobian, derivative from the desired trajectory and linearization of indexes or constraints. A discussion of these three methods is presented in terms of tracking error, constraint violation, singularity distance, among others through experiments performed on a Baxter collaborative robot.Métodos de rastreamento de trajetória para manipuladores redundantes restritos são apresentados nesta tese, onde o efetuador de um manipulador serial redundante tem que rastrear uma trajetória desejada enquanto alguns pontos em sua cadeia cinemática satisfazem uma ou mais restrições. Além disso, dois índices de manipulabilidade são levados em consideração a fim de otimizar a trajetória para evitar singularidades. O primeiro índice é definido em função do jacobiano geométrico do manipulador na configuração restrita. O segundo índice é baseado no Jacobiano restrito, o qual mapeia velocidades no espaço das juntas para a espaço da tarefa, levando em conta as restrições holonômicas. Três métodos para resolver o problema de rastreamento de trajetória são discutidos. Os dois primeiros, controle cinemático e programação quadrática (QP), são amplamente discutidos na literatura. O terceiro, programação quadrática sequencial (SQP), é uma nova abordagem, diferentemente do controle cinemático ou QP, tem como vantagens (apesar de algumas deficiências) não depender explicitamente da pseudo-inversa de jacobianos, derivadas da trajetória desejada e linearização de índices ou restrições. Uma discussão desses três métodos é apresentada em termos de erro de rastreamento, violação da restrição, distância de singularidades, entre outros através de experimentos realizados em um robô colaborativo Baxter

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Grasp plannind under task-specific contact constraints

    Get PDF
    Several aspects have to be addressed before realizing the dream of a robotic hand-arm system with human-like capabilities, ranging from the consolidation of a proper mechatronic design, to the development of precise, lightweight sensors and actuators, to the efficient planning and control of the articular forces and motions required for interaction with the environment. This thesis provides solution algorithms for a main problem within the latter aspect, known as the {\em grasp planning} problem: Given a robotic system formed by a multifinger hand attached to an arm, and an object to be grasped, both with a known geometry and location in 3-space, determine how the hand-arm system should be moved without colliding with itself or with the environment, in order to firmly grasp the object in a suitable way. Central to our algorithms is the explicit consideration of a given set of hand-object contact constraints to be satisfied in the final grasp configuration, imposed by the particular manipulation task to be performed with the object. This is a distinguishing feature from other grasp planning algorithms given in the literature, where a means of ensuring precise hand-object contact locations in the resulting grasp is usually not provided. These conventional algorithms are fast, and nicely suited for planning grasps for pick-an-place operations with the object, but not for planning grasps required for a specific manipulation of the object, like those necessary for holding a pen, a pair of scissors, or a jeweler's screwdriver, for instance, when writing, cutting a paper, or turning a screw, respectively. To be able to generate such highly-selective grasps, we assume that a number of surface regions on the hand are to be placed in contact with a number of corresponding regions on the object, and enforce the fulfilment of such constraints on the obtained solutions from the very beginning, in addition to the usual constraints of grasp restrainability, manipulability and collision avoidance. The proposed algorithms can be applied to robotic hands of arbitrary structure, possibly considering compliance in the joints and the contacts if desired, and they can accommodate general patch-patch contact constraints, instead of more restrictive contact types occasionally considered in the literature. It is worth noting, also, that while common force-closure or manipulability indices are used to asses the quality of grasps, no particular assumption is made on the mathematical properties of the quality index to be used, so that any quality criterion can be accommodated in principle. The algorithms have been tested and validated on numerous situations involving real mechanical hands and typical objects, and find applications in classical or emerging contexts like service robotics, telemedicine, space exploration, prosthetics, manipulation in hazardous environments, or human-robot interaction in general

    Shared control for natural motion and safety in hands-on robotic surgery

    Get PDF
    Hands-on robotic surgery is where the surgeon controls the tool's motion by applying forces and torques to the robot holding the tool, allowing the robot-environment interaction to be felt though the tool itself. To further improve results, shared control strategies are used to combine the strengths of the surgeon with those of the robot. One such strategy is active constraints, which prevent motion into regions deemed unsafe or unnecessary. While research in active constraints on rigid anatomy has been well-established, limited work on dynamic active constraints (DACs) for deformable soft tissue has been performed, particularly on strategies which handle multiple sensing modalities. In addition, attaching the tool to the robot imposes the end effector dynamics onto the surgeon, reducing dexterity and increasing fatigue. Current control policies on these systems only compensate for gravity, ignoring other dynamic effects. This thesis presents several research contributions to shared control in hands-on robotic surgery, which create a more natural motion for the surgeon and expand the usage of DACs to point clouds. A novel null-space based optimization technique has been developed which minimizes the end effector friction, mass, and inertia of redundant robots, creating a more natural motion, one which is closer to the feeling of the tool unattached to the robot. By operating in the null-space, the surgeon is left in full control of the procedure. A novel DACs approach has also been developed, which operates on point clouds. This allows its application to various sensing technologies, such as 3D cameras or CT scans and, therefore, various surgeries. Experimental validation in point-to-point motion trials and a virtual reality ultrasound scenario demonstrate a reduction in work when maneuvering the tool and improvements in accuracy and speed when performing virtual ultrasound scans. Overall, the results suggest that these techniques could increase the ease of use for the surgeon and improve patient safety.Open Acces

    Actuation-Aware Simplified Dynamic Models for Robotic Legged Locomotion

    Get PDF
    In recent years, we witnessed an ever increasing number of successful hardware implementations of motion planners for legged robots. If one common property is to be identified among these real-world applications, that is the ability of online planning. Online planning is forgiving, in the sense that it allows to relentlessly compensate for external disturbances of whatever form they might be, ranging from unmodeled dynamics to external pushes or unexpected obstacles and, at the same time, follow user commands. Initially replanning was restricted only to heuristic-based planners that exploit the low computational effort of simplified dynamic models. Such models deliberately only capture the main dynamics of the system, thus leaving to the controllers the issue of anchoring the desired trajectory to the whole body model of the robot. In recent years, however, we have seen a number of new approaches attempting to increase the accuracy of the dynamic formulation without trading-off the computational efficiency of simplified models. In this dissertation, as an example of successful hardware implementation of heuristics and simplified model-based locomotion, I describe the framework that I developed for the generation of an omni-directional bounding gait for the HyQ quadruped robot. By analyzing the stable limit cycles for the sagittal dynamics and the Center of Pressure (CoP) for the lateral stabilization, the described locomotion framework is able to achieve a stable bounding while adapting to terrains of mild roughness and to sudden changes of the user desired linear and angular velocities. The next topic reported and second contribution of this dissertation is my effort to formulate more descriptive simplified dynamic models, without trading off their computational efficiency, in order to extend the navigation capabilities of legged robots to complex geometry environments. With this in mind, I investigated the possibility of incorporating feasibility constraints in these template models and, in particular, I focused on the joint torques limits which are usually neglected at the planning stage. In this direction, the third contribution discussed in this thesis is the formulation of the so called actuation wrench polytope (AWP), defined as the set of feasible wrenches that an articulated robot can perform given its actuation limits. Interesected with the contact wrench cone (CWC), this yields a new 6D polytope that we name feasible wrench polytope (FWP), defined as the set of all wrenches that a legged robot can realize given its actuation capabilities and the friction constraints. Results are reported where, thanks to efficient computational geometry algorithms and to appropriate approximations, the FWP is employed for a one-step receding horizon optimization of center of mass trajectory and phase durations given a predefined step sequence on rough terrains. For the sake of reachable workspace augmentation, I then decided to trade off the generality of the FWP formulation for a suboptimal scenario in which a quasi-static motion is assumed. This led to the definition of the, so called, local/instantaneous actuation region and of the global actuation/feasible region. They both can be seen as different variants of 2D linear subspaces orthogonal to gravity where the robot is guaranteed to place its own center of mass while being able to carry its own body weight given its actuation capabilities. These areas can be intersected with the well known frictional support region, resulting in a 2D linear feasible region, thus providing an intuitive tool that enables the concurrent online optimization of actuation consistent CoM trajectories and target foothold locations on rough terrains

    Wrench capability of planar manipulators

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Mecânica, Florianópolis, 2016.Robôs são amplamente utilizados em fábricas, e novas aplicações no espaço, nos oceanos, nas indústrias nucleares e em outros campos estão sendo ativamente desenvolvidas. A criação de robôs autônomos que podem aprender a agir em ambientes imprevisíveis têm sido um objetivo de longa data da robótica, da inteligência artificial, e das ciências cognitivas.Um passo importante para a autonomia dos robôs é a necessidade de dotá-los com um certo nível de independência, a fim de enfrentar as mudanças rápidas no ambiente circundante; para obter robôs que operem fora de ambientes rigidamente estruturados, tais como centros de investigação ou instalações de universidades e sem precisar da supervisão de engenheiros ou especialistas, é necessário enfrentar diferentes desafios tecnológicos, entre eles, o desenvolvimento de estratégias que permitam que os robôs interajam com o ambiente. Neste contexto, quando um contacto físico com o ambiente é estabelecido, uma força específica precisa de ser exercida e esta força tem de ser controlada em relação ao processo a fim de evitar a sobrecarga ou danificar o manipulador ou os objetos a serem manipulados.O principal objetivo deste trabalho é apresentar novas metodologias desenvolvidas para determinar a máxima carga que um mecanismo ou manipulador planar pode aplicar ou suportar (capacidade de carga), sejam eles paralelos, seriais ou híbridos e com redundância ou não. A fim de resolver o problema da capacidade de carga, neste trabalho foram propostas duas novas abordagens com base no método do fator de escala clássico e nos métodos clássicos de otimização. Essas novas abordagens deram como resultado um novo método chamado de método de fator de escala modificado utilizado para resolver a capacidade de carga em manipuladores seriais planares e quatro modelos matemáticos para resolver o problema de capacidade de carga em manipuladores paralelos planares com um grau líquido de restrição igual três, quatro, cinco ou seis (CN = 3, CN = 4, CN = 5 ou CN = 6).Abstract : Robots are now widely used in factories, and new applications of robots in space, the oceans, nuclear industries, and other fields are being actively developed. Creating autonomous robots that can learn to act in unpredictable environments has been a long-standing goal of robotics, artificial intelligence, and cognitive sciences.An important step towards the autonomy of robots is the need to provide them with a certain level of independence in order to face quick changes in the environment surrounding them; to get robots operating outside rigidly structured environments, such as research centres or universities facilities and beyond the supervision of engineers or experts, it is necessary to face different technological challenges, amongst them, the development of strategies that allow robots to interact with the environment. In this context, when a physical contact with the the environment is established, a process-specific force need to be exerted and this force has to be controlled in relation to the particular process in order to prevent overloading or damaging the manipulator or the objects to be manipulated.The main objective of this work is to present new methodologies developed for determining the maximum wrench that can be applied or sustained (wrench capability) in planar mechanisms and manipulators, whether it be serial parallel or hybrid and with redundancy or not. In order to solve the wrench capability problem, in this work two new approaches were proposed based in the classic scaling factor method and in classical optimization methods. These new approaches gave as result a new method called the modified scaling factor method used to solve the wrench capability in planar serial manipulators and four mathematical closed-form solutions to solve the wrench capability problem in planar parallel manipulators with a net degree of constraint equal to three, four, five or six (CN = 3, CN = 4, CN = 5 ou CN = 6)

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world
    corecore