1,415 research outputs found

    Cloudbus Toolkit for Market-Oriented Cloud Computing

    Full text link
    This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.Comment: 21 pages, 6 figures, 2 tables, Conference pape

    AN EFFICIENT APPROACH TO IMPLEMENT FEDERATED CLOUDS

    Get PDF
    Cloud computing is one of the trending technologies that provide boundless virtualized resources to the internet users as an important services through the internet, while providing the privacy and security. By using these cloud services, internet users get many parallel computing resources at low cost. It predicted that till 2016, revenues from the online business management spent $4 billion for data storage. Cloud is an open source platform structure, so it is having more chances to malicious attacks. Privacy, confidentiality, and security of stored data are primary security challenges in cloud computing. In cloud computing, ‘virtualization' is one of the techniques dividing memory into different blocks. In most of the existing systems there is only single authority in the system to provide the encrypted keys. To fill the few security issues, this paper proposed a novel authenticated trust security model for secure virtualization system to encrypt the files. The proposed security model achieves the following functions: 1) allotting the VSM(VM Security Monitor) model for each virtual machine; 2) providing secret keys to encrypt and decrypt information by symmetric encryption.The contribution is a proposed architecture that provides a workable security that a cloud service provider can offer to its consumers. Detailed analysis and architecture design presented to elaborate security model

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Introducing risk management into the grid

    Get PDF
    Service Level Agreements (SLAs) are explicit statements about all expectations and obligations in the business partnership between customers and providers. They have been introduced in Grid computing to overcome the best effort approach, making the Grid more interesting for commercial applications. However, decisions on negotiation and system management still rely on static approaches, not reflecting the risk linked with decisions. The EC-funded project "AssessGrid" aims at introducing risk assessment and management as a novel decision paradigm into Grid computing. This paper gives a general motivation for risk management and presents the envisaged architecture of a "risk-aware" Grid middleware and Grid fabric, highlighting its functionality by means of three showcase scenarios

    Novel mechanism for evaluating feedback in the grid environment on resource allocation

    Full text link
    The primary concern in proffering an infrastructure for general purpose computational grids formation is security. Grid implementations have been devised to deal with the security concerns. The chief factors that can be problematic in the secured selection of grid resources are the wide range of selection and the high degree of strangeness. Moreover, the lack of a higher degree of confidence relationship is likely to prevent efficient resource allocation and utilization. In this paper, we propose an efficient approach for the secured selection of grid resources, so as to achieve secure execution of the jobs. The presented approach utilizes trust and reputation for securely selecting the grid resources by also evaluation user’s feedback on the basis of the feedback already available about the entities. The proposed approach is scalable for an increased number of resources

    Financial evaluation of SLA-based VM scheduling strategies for cloud federations

    Get PDF
    In recent years, cloud federations have gained popularity. Small as well as big cloud service providers (CSPs) join federations to reduce their costs, and also cloud management software like OpenStack offers support for federations. In a federation, individual CSPs cooperate such that they can move load to partner clouds at high peaks and possibly offer a wider range of services to their customers. Research in this area addresses the organization of such federations and strategies that CSPs can apply to increase their profit. In this paper we present the latest extensions to the FederatedCloudSim framework that considerably improve the simulation and evaluation of cloud federations. These simulations include service-level agreements (SLAs), scheduling and brokering strategies on various levels, the use of real-world cloud workload traces and a fine-grained financial evaluation using the new CloudAccount module. We use FederatedCloudSim to compare scheduling and brokering strategies on the federation level. Among them are new strategies that conduct auctions or consult a reliance factor to select an appropriate federated partner for running outsourced virtual machines. Our results show that choosing the right strategy has a significant impact on SLA compliance and revenue

    An efficient approach based on trust and reputation for secured selection of grid resources

    Full text link
    Security is a principal concern in offering an infrastructure for the formation of general-purpose computational grids. A number of grid implementations have been devised to deal with the security concerns by authenticating the users, hosts and their interactions in an appropriate fashion. Resource management systems that are sophisticated and secured are inevitable for the efficient and beneficial deployment of grid computing services. The chief factors that can be problematic in the secured selection of grid resources are the wide range of selection and the high degree of strangeness. Moreover, the lack of a higher degree of confidence relationship is likely to prevent efficient resource allocation and utilisation. In this paper, we present an efficient approach for the secured selection of grid resources, so as to achieve secure execution of the jobs. This approach utilises trust and reputation for securely selecting the grid resources. To start with, the self-protection capability and reputation weightage of all the entities are computed, and based on those values, the trust factor (TF) of all the entities are determined. The reputation weightage of an entity is the measure of both the user’s feedback and other entities’ feedback. Those entities with higher TF values are selected for the secured execution of jobs. To make the proposed approach more comprehensive, a novel method is employed for evaluating the user’s feedback on the basis of the existing feedbacks available regarding the entities. This approach is proved to be scalable for an increased number of user jobs and grid entities. The experimentation portrays that this approach offers desirable efficiency in the secured selection of grid resources
    • …
    corecore