2,495 research outputs found

    Channel selection for test-time adaptation under distribution shift

    Full text link
    To ensure robustness and generalization to real-world scenarios, test-time adaptation has been recently studied as an approach to adjust models to a new data distribution during inference. Test-time batch normalization is a simple and popular method that achieved compelling performance on domain shift benchmarks by recalculating batch normalization statistics on test batches. However, in many practical applications this technique is vulnerable to label distribution shifts. We propose to tackle this challenge by only selectively adapting channels in a deep network, minimizing drastic adaptation that is sensitive to label shifts. We find that adapted models significantly improve the performance compared to the baseline models and counteract unknown label shifts

    On Sensitivity and Robustness of Normalization Schemes to Input Distribution Shifts in Automatic MR Image Diagnosis

    Full text link
    Magnetic Resonance Imaging (MRI) is considered the gold standard of medical imaging because of the excellent soft-tissue contrast exhibited in the images reconstructed by the MRI pipeline, which in-turn enables the human radiologist to discern many pathologies easily. More recently, Deep Learning (DL) models have also achieved state-of-the-art performance in diagnosing multiple diseases using these reconstructed images as input. However, the image reconstruction process within the MRI pipeline, which requires the use of complex hardware and adjustment of a large number of scanner parameters, is highly susceptible to noise of various forms, resulting in arbitrary artifacts within the images. Furthermore, the noise distribution is not stationary and varies within a machine, across machines, and patients, leading to varying artifacts within the images. Unfortunately, DL models are quite sensitive to these varying artifacts as it leads to changes in the input data distribution between the training and testing phases. The lack of robustness of these models against varying artifacts impedes their use in medical applications where safety is critical. In this work, we focus on improving the generalization performance of these models in the presence of multiple varying artifacts that manifest due to the complexity of the MR data acquisition. In our experiments, we observe that Batch Normalization, a widely used technique during the training of DL models for medical image analysis, is a significant cause of performance degradation in these changing environments. As a solution, we propose to use other normalization techniques, such as Group Normalization and Layer Normalization (LN), to inject robustness into model performance against varying image artifacts. Through a systematic set of experiments, we show that GN and LN provide better accuracy for various MR artifacts and distribution shifts.Comment: Accepted at MIDL 202

    Evaluating Continual Test-Time Adaptation for Contextual and Semantic Domain Shifts

    Full text link
    In this paper, our goal is to adapt a pre-trained convolutional neural network to domain shifts at test time. We do so continually with the incoming stream of test batches, without labels. The existing literature mostly operates on artificial shifts obtained via adversarial perturbations of a test image. Motivated by this, we evaluate the state of the art on two realistic and challenging sources of domain shifts, namely contextual and semantic shifts. Contextual shifts correspond to the environment types, for example, a model pre-trained on indoor context has to adapt to the outdoor context on CORe-50. Semantic shifts correspond to the capture types, for example a model pre-trained on natural images has to adapt to cliparts, sketches, and paintings on DomainNet. We include in our analysis recent techniques such as Prediction-Time Batch Normalization (BN), Test Entropy Minimization (TENT) and Continual Test-Time Adaptation (CoTTA). Our findings are three-fold: i) Test-time adaptation methods perform better and forget less on contextual shifts compared to semantic shifts, ii) TENT outperforms other methods on short-term adaptation, whereas CoTTA outpeforms other methods on long-term adaptation, iii) BN is most reliable and robust. Our code is available at https://github.com/tommiekerssies/Evaluating-Continual-Test-Time-Adaptation-for-Contextual-and-Semantic-Domain-Shifts

    Towards Bridging the gap between Empirical and Certified Robustness against Adversarial Examples

    Full text link
    The current state-of-the-art defense methods against adversarial examples typically focus on improving either empirical or certified robustness. Among them, adversarially trained (AT) models produce empirical state-of-the-art defense against adversarial examples without providing any robustness guarantees for large classifiers or higher-dimensional inputs. In contrast, existing randomized smoothing based models achieve state-of-the-art certified robustness while significantly degrading the empirical robustness against adversarial examples. In this paper, we propose a novel method, called \emph{Certification through Adaptation}, that transforms an AT model into a randomized smoothing classifier during inference to provide certified robustness for â„“2\ell_2 norm without affecting their empirical robustness against adversarial attacks. We also propose \emph{Auto-Noise} technique that efficiently approximates the appropriate noise levels to flexibly certify the test examples using randomized smoothing technique. Our proposed \emph{Certification through Adaptation} with \emph{Auto-Noise} technique achieves an \textit{average certified radius (ACR) scores} up to 1.1021.102 and 1.1481.148 respectively for CIFAR-10 and ImageNet datasets using AT models without affecting their empirical robustness or benign accuracy. Therefore, our paper is a step towards bridging the gap between the empirical and certified robustness against adversarial examples by achieving both using the same classifier.Comment: An abridged version of this work has been presented at ICLR 2021 Workshop on Security and Safety in Machine Learning Systems: https://aisecure-workshop.github.io/aml-iclr2021/papers/2.pd
    • …
    corecore