293 research outputs found

    Understanding Optical Music Recognition

    Get PDF
    For over 50 years, researchers have been trying to teach computers to read music notation, referred to as Optical Music Recognition (OMR). However, this field is still difficult to access for new researchers, especially those without a significant musical background: Few introductory materials are available, and, furthermore, the field has struggled with defining itself and building a shared terminology. In this work, we address these shortcomings by (1) providing a robust definition of OMR and its relationship to related fields, (2) analyzing how OMR inverts the music encoding process to recover the musical notation and the musical semantics from documents, and (3) proposing a taxonomy of OMR, with most notably a novel taxonomy of applications. Additionally, we discuss how deep learning affects modern OMR research, as opposed to the traditional pipeline. Based on this work, the reader should be able to attain a basic understanding of OMR: its objectives, its inherent structure, its relationship to other fields, the state of the art, and the research opportunities it affords

    Searching Page-Images of Early Music Scanned with OMR: A Scalable Solution Using Minimal Absent Words

    Get PDF
    We define three retrieval tasks requiring efficient search of the musical content of a collection of ~32k page images of 16th-century music to find: duplicates; pages with the same musical content; pages of related music. The images are subjected to Optical Music Recognition (OMR), introducing inevitable errors. We encode pages as strings of diatonic pitch intervals, ignoring rests, to reduce the effect of such errors. We extract indices comprising lists of two kinds of ‘word’. Approximate matching is done by counting the number of common words between a query page and those in the collection. The two word-types are (a) normal ngrams and (b) minimal absent words (MAWs). The latter have three important properties for our purpose: they can be built and searched in linear time, the number of MAWs generated tends to be smaller, and they preserve the structure and order of the text, obviating the need for expensive sorting operations. We show that retrieval performance of MAWs is comparable with ngrams, but with a marked speed improvement. We also show the effect of word length on retrieval. Our results suggest that an index of MAWs of mixed length provides a good method for these tasks which is scalable to larger collections

    DeepScores : a dataset for segmentation, detection and classification of tiny objects

    Get PDF
    We present the DeepScores dataset with the goal of advancing the state-of-the-art in small object recognition by placing the question of object recognition in the context of scene understanding. DeepScores contains high quality images of musical scores, partitioned into 300,000 sheets of written music that contain symbols of different shapes and sizes. With close to a hundred million small objects, this makes our dataset not only unique, but also the largest public dataset. DeepScores comes with ground truth for object classification, detection and semantic segmentation. DeepScores thus poses a relevant challenge for computer vision in general, and optical music recognition (OMR) research in particular. We present a detailed statistical analysis of the dataset, comparing it with other computer vision datasets like PASCAL VOC, SUN, SVHN, ImageNet, MS-COCO, as well as with other OMR datasets. Finally, we provide baseline performances for object classification, intuition for the inherent difficulty that DeepScores poses to state-of-the-art object detectors like YOLO or R-CNN, and give pointers to future research based on this dataset

    Improving optical music recognition by combining outputs from multiple sources

    Get PDF
    Current software for Optical Music Recognition (OMR) produces outputs with too many errors that render it an unrealistic option for the production of a large corpus of symbolic music files. In this paper, we propose a system which applies image pre-processing techniques to scans of scores and combines the outputs of different commercial OMR programs when applied to images of different scores of the same piece of music. As a result of this procedure, the combined output has around 50% fewer errors when compared to the output of any one OMR program. Image pre-processing splits scores into separate movements and sections and removes ossia staves which confuse OMR software. Post-processing aligns the outputs from different OMR programs and from different sources, rejecting outputs with the most errors and using majority voting to determine the likely correct details. Our software produces output in MusicXML, concentrating on accurate pitch and rhythm and ignoring grace notes. Results of tests on the six string quartets by Mozart dedicated to Joseph Haydn and the first six piano sonatas by Mozart are presented, showing an average recognition rate of around 95%

    End-to-End Neural Optical Music Recognition of Monophonic Scores

    Get PDF
    [EN] Optical Music Recognition is a field of research that investigates how to computationally decode music notation from images. Despite the efforts made so far, there are hardly any complete solutions to the problem. In this work, we study the use of neural networks that work in an end-to-end manner. This is achieved by using a neural model that combines the capabilities of convolutional neural networks, which work on the input image, and recurrent neural networks, which deal with the sequential nature of the problem. Thanks to the use of the the so-called Connectionist Temporal Classification loss function, these models can be directly trained from input images accompanied by their corresponding transcripts into music symbol sequences. We also present the Printed Images of Music Staves (PrIMuS) dataset, containing more than 80,000 monodic single-staff real scores in common western notation, that is used to train and evaluate the neural approach. In our experiments, it is demonstrated that this formulation can be carried out successfully. Additionally, we study several considerations about the codification of the output musical sequences, the convergence and scalability of the neural models, as well as the ability of this approach to locate symbols in the input score.This work was supported by the Social Sciences and Humanities Research Council of Canada, and the Spanish Ministerio de Economia y Competitividad through Project HISPAMUS Ref. No. TIN2017-86576-R (supported by UE FEDER funds).Calvo-Zaragoza, J.; Rizo, D. (2018). End-to-End Neural Optical Music Recognition of Monophonic Scores. Applied Sciences. 8(4). https://doi.org/10.3390/app8040606S8

    Optical Music Recognition: State of the Art and Major Challenges

    Get PDF
    Optical Music Recognition (OMR) is concerned with transcribing sheet music into a machine-readable format. The transcribed copy should allow musicians to compose, play and edit music by taking a picture of a music sheet. Complete transcription of sheet music would also enable more efficient archival. OMR facilitates examining sheet music statistically or searching for patterns of notations, thus helping use cases in digital musicology too. Recently, there has been a shift in OMR from using conventional computer vision techniques towards a deep learning approach. In this paper, we review relevant works in OMR, including fundamental methods and significant outcomes, and highlight different stages of the OMR pipeline. These stages often lack standard input and output representation and standardised evaluation. Therefore, comparing different approaches and evaluating the impact of different processing methods can become rather complex. This paper provides recommendations for future work, addressing some of the highlighted issues and represents a position in furthering this important field of research
    corecore