29,460 research outputs found

    Self-Supervised Vision-Based Detection of the Active Speaker as Support for Socially-Aware Language Acquisition

    Full text link
    This paper presents a self-supervised method for visual detection of the active speaker in a multi-person spoken interaction scenario. Active speaker detection is a fundamental prerequisite for any artificial cognitive system attempting to acquire language in social settings. The proposed method is intended to complement the acoustic detection of the active speaker, thus improving the system robustness in noisy conditions. The method can detect an arbitrary number of possibly overlapping active speakers based exclusively on visual information about their face. Furthermore, the method does not rely on external annotations, thus complying with cognitive development. Instead, the method uses information from the auditory modality to support learning in the visual domain. This paper reports an extensive evaluation of the proposed method using a large multi-person face-to-face interaction dataset. The results show good performance in a speaker dependent setting. However, in a speaker independent setting the proposed method yields a significantly lower performance. We believe that the proposed method represents an essential component of any artificial cognitive system or robotic platform engaging in social interactions.Comment: 10 pages, IEEE Transactions on Cognitive and Developmental System

    Meetings and Meeting Modeling in Smart Environments

    Get PDF
    In this paper we survey our research on smart meeting rooms and its relevance for augmented reality meeting support and virtual reality generation of meetings in real time or off-line. The research reported here forms part of the European 5th and 6th framework programme projects multi-modal meeting manager (M4) and augmented multi-party interaction (AMI). Both projects aim at building a smart meeting environment that is able to collect multimodal captures of the activities and discussions in a meeting room, with the aim to use this information as input to tools that allow real-time support, browsing, retrieval and summarization of meetings. Our aim is to research (semantic) representations of what takes place during meetings in order to allow generation, e.g. in virtual reality, of meeting activities (discussions, presentations, voting, etc.). Being able to do so also allows us to look at tools that provide support during a meeting and at tools that allow those not able to be physically present during a meeting to take part in a virtual way. This may lead to situations where the differences between real meeting participants, human-controlled virtual participants and (semi-) autonomous virtual participants disappear

    Specifying and analysing reputation systems with coordination languages

    Get PDF
    Reputation systems are nowadays widely used to support decision making in networked systems. Parties in such systems rate each other and use shared ratings to compute reputation scores that drive their interactions. The existence of reputation systems with remarkable differences calls for formal approaches to their analysis. We present a verification methodology for reputation systems that is based on the use of the coordination language Klaim and related analysis tools. First, we define a parametric Klaim specification of a reputation system that can be instantiated with different reputation models. Then, we consider stochastic specification obtained by considering actions with random (exponentially distributed) duration. The resulting specification enables quantitative analysis of properties of the considered system. Feasibility and effectiveness of our proposal is demonstrated by reporting on the analysis of two reputation models
    corecore