662 research outputs found

    MRBench: A Benchmark for MapReduce Framework

    Full text link
    MapReduce is Google’s programming model for easy development of scalable parallel applications which pro-cess huge quantity of data on many clusters. Due to its conveniency and efficiency, MapReduce is used in various applications (e.g., web search services and on-line analytical processing.) However, there are only few good benchmarks to evaluate MapReduce implementa-tions by realistic testsets. In this paper, we present MRBench that is a bench-mark for evaluating MapReduce systems. MRBench fo-cuses on processing business oriented queries and con-current data modifications. To this end, we build MR-Bench to deal with large volumes of relational data and execute highly complex queries. By MRBench, users can evaluate the performance of MapReduce systems while varying environmental parameters such as data size and the number of (Map/Reduce) tasks. Our ex-tensive experimental results show that MRBench is a useful tool to benchmark the capability of answering critical business questions.

    Optimizing the MapReduce Framework on Intel Xeon Phi Coprocessor

    Full text link
    With the ease-of-programming, flexibility and yet efficiency, MapReduce has become one of the most popular frameworks for building big-data applications. MapReduce was originally designed for distributed-computing, and has been extended to various architectures, e,g, multi-core CPUs, GPUs and FPGAs. In this work, we focus on optimizing the MapReduce framework on Xeon Phi, which is the latest product released by Intel based on the Many Integrated Core Architecture. To the best of our knowledge, this is the first work to optimize the MapReduce framework on the Xeon Phi. In our work, we utilize advanced features of the Xeon Phi to achieve high performance. In order to take advantage of the SIMD vector processing units, we propose a vectorization friendly technique for the map phase to assist the auto-vectorization as well as develop SIMD hash computation algorithms. Furthermore, we utilize MIMD hyper-threading to pipeline the map and reduce to improve the resource utilization. We also eliminate multiple local arrays but use low cost atomic operations on the global array for some applications, which can improve the thread scalability and data locality due to the coherent L2 caches. Finally, for a given application, our framework can either automatically detect suitable techniques to apply or provide guideline for users at compilation time. We conduct comprehensive experiments to benchmark the Xeon Phi and compare our optimized MapReduce framework with a state-of-the-art multi-core based MapReduce framework (Phoenix++). By evaluating six real-world applications, the experimental results show that our optimized framework is 1.2X to 38X faster than Phoenix++ for various applications on the Xeon Phi

    Real-Time MapReduce Scheduling

    Get PDF
    In this paper, we explore the feasibility of enabling the scheduling of mixed hard and soft real-time MapReduce applications. We first present an experimental evaluation of the popular Hadoop MapReduce middleware on the Amazon EC2 cloud. Our evaluation reveals tradeoffs between overall system throughput and execution time predictability, as well as highlights a number of factors affecting real-time scheduling, such as data placement, concurrent users, and master scheduling overhead. Based on our evaluation study, we present a formal model for capturing real-time MapReduce applications and the Hadoop platform. Using this model, we formulate the offline scheduling of real-time MapReduce jobs on a heterogeneous distributed Hadoop architecture as a constraint satisfaction problem (CSP) and introduce various search strategies for the formulation. We propose an enhancement of MapReduce’s execution model and a range of heuristic techniques for the online scheduling. We further outline some of our future directions that apply state-of-the-art techniques in the real-time scheduling literature

    Towards co-designed optimizations in parallel frameworks: A MapReduce case study

    Full text link
    The explosion of Big Data was followed by the proliferation of numerous complex parallel software stacks whose aim is to tackle the challenges of data deluge. A drawback of a such multi-layered hierarchical deployment is the inability to maintain and delegate vital semantic information between layers in the stack. Software abstractions increase the semantic distance between an application and its generated code. However, parallel software frameworks contain inherent semantic information that general purpose compilers are not designed to exploit. This paper presents a case study demonstrating how the specific semantic information of the MapReduce paradigm can be exploited on multicore architectures. MR4J has been implemented in Java and evaluated against hand-optimized C and C++ equivalents. The initial observed results led to the design of a semantically aware optimizer that runs automatically without requiring modification to application code. The optimizer is able to speedup the execution time of MR4J by up to 2.0x. The introduced optimization not only improves the performance of the generated code, during the map phase, but also reduces the pressure on the garbage collector. This demonstrates how semantic information can be harnessed without sacrificing sound software engineering practices when using parallel software frameworks.Comment: 8 page

    D-SPACE4Cloud: A Design Tool for Big Data Applications

    Get PDF
    The last years have seen a steep rise in data generation worldwide, with the development and widespread adoption of several software projects targeting the Big Data paradigm. Many companies currently engage in Big Data analytics as part of their core business activities, nonetheless there are no tools and techniques to support the design of the underlying hardware configuration backing such systems. In particular, the focus in this report is set on Cloud deployed clusters, which represent a cost-effective alternative to on premises installations. We propose a novel tool implementing a battery of optimization and prediction techniques integrated so as to efficiently assess several alternative resource configurations, in order to determine the minimum cost cluster deployment satisfying QoS constraints. Further, the experimental campaign conducted on real systems shows the validity and relevance of the proposed method

    ShenZhen transportation system (SZTS): a novel big data benchmark suite

    Get PDF
    Data analytics is at the core of the supply chain for both products and services in modern economies and societies. Big data workloads, however, are placing unprecedented demands on computing technologies, calling for a deep understanding and characterization of these emerging workloads. In this paper, we propose ShenZhen Transportation System (SZTS), a novel big data Hadoop benchmark suite comprised of real-life transportation analysis applications with real-life input data sets from Shenzhen in China. SZTS uniquely focuses on a specific and real-life application domain whereas other existing Hadoop benchmark suites, such as HiBench and CloudRank-D, consist of generic algorithms with synthetic inputs. We perform a cross-layer workload characterization at the microarchitecture level, the operating system (OS) level, and the job level, revealing unique characteristics of SZTS compared to existing Hadoop benchmarks as well as general-purpose multi-core PARSEC benchmarks. We also study the sensitivity of workload behavior with respect to input data size, and we propose a methodology for identifying representative input data sets
    corecore