1,628 research outputs found

    Hydra: An Accelerator for Real-Time Edge-Aware Permeability Filtering in 65nm CMOS

    Full text link
    Many modern video processing pipelines rely on edge-aware (EA) filtering methods. However, recent high-quality methods are challenging to run in real-time on embedded hardware due to their computational load. To this end, we propose an area-efficient and real-time capable hardware implementation of a high quality EA method. In particular, we focus on the recently proposed permeability filter (PF) that delivers promising quality and performance in the domains of HDR tone mapping, disparity and optical flow estimation. We present an efficient hardware accelerator that implements a tiled variant of the PF with low on-chip memory requirements and a significantly reduced external memory bandwidth (6.4x w.r.t. the non-tiled PF). The design has been taped out in 65 nm CMOS technology, is able to filter 720p grayscale video at 24.8 Hz and achieves a high compute density of 6.7 GFLOPS/mm2 (12x higher than embedded GPUs when scaled to the same technology node). The low area and bandwidth requirements make the accelerator highly suitable for integration into SoCs where silicon area budget is constrained and external memory is typically a heavily contended resource

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”

    Factor Fitting, Rank Allocation, and Partitioning in Multilevel Low Rank Matrices

    Full text link
    We consider multilevel low rank (MLR) matrices, defined as a row and column permutation of a sum of matrices, each one a block diagonal refinement of the previous one, with all blocks low rank given in factored form. MLR matrices extend low rank matrices but share many of their properties, such as the total storage required and complexity of matrix-vector multiplication. We address three problems that arise in fitting a given matrix by an MLR matrix in the Frobenius norm. The first problem is factor fitting, where we adjust the factors of the MLR matrix. The second is rank allocation, where we choose the ranks of the blocks in each level, subject to the total rank having a given value, which preserves the total storage needed for the MLR matrix. The final problem is to choose the hierarchical partition of rows and columns, along with the ranks and factors. This paper is accompanied by an open source package that implements the proposed methods

    A robust and scalable implementation of the Parks-McClellan algorithm for designing FIR filters

    Get PDF
    Preliminary version accepted for publicationInternational audienceWith a long history dating back to the beginning of the 1970s, the Parks-McClellan algorithm is probably the most well-known approach for designing finite impulse response filters. Despite being a standard routine in many signal processing packages, it is possible to find practical design specifications where existing codes fail to work. Our goal is twofold. We first examine and present solutions for the practical difficulties related to weighted minimax polynomial approximation problems on multi-interval domains (i.e., the general setting under which the Parks-McClellan algorithm operates). Using these ideas, we then describe a robust implementation of this algorithm. It routinely outperforms existing minimax filter design routines

    Doctor of Philosophy

    Get PDF
    dissertationMemory access irregularities are a major bottleneck for bandwidth limited problems on Graphics Processing Unit (GPU) architectures. GPU memory systems are designed to allow consecutive memory accesses to be coalesced into a single memory access. Noncontiguous accesses within a parallel group of threads working in lock step may cause serialized memory transfers. Irregular algorithms may have data-dependent control flow and memory access, which requires runtime information to be evaluated. Compile time methods for evaluating parallelism, such as static dependence graphs, are not capable of evaluating irregular algorithms. The goals of this dissertation are to study irregularities within the context of unstructured mesh and sparse matrix problems, analyze the impact of vectorization widths on irregularities, and present data-centric methods that improve control flow and memory access irregularity within those contexts. Reordering associative operations has often been exploited for performance gains in parallel algorithms. This dissertation presents a method for associative reordering of stencil computations over unstructured meshes that increases data reuse through caching. This novel parallelization scheme offers considerable speedups over standard methods. Vectorization widths can have significant impact on performance in vectorized computations. Although the hardware vector width is generally fixed, the logical vector width used within a computation can range from one up to the width of the computation. Significant performance differences can occur due to thread scheduling and resource limitations. This dissertation analyzes the impact of vectorization widths on dense numerical computations such as 3D dG postprocessing. It is difficult to efficiently perform dynamic updates on traditional sparse matrix formats. Explicitly controlling memory segmentation allows for in-place dynamic updates in sparse matrices. Dynamically updating the matrix without rebuilding or sorting greatly improves processing time and overall throughput. This dissertation presents a new sparse matrix format, dynamic compressed sparse row (DCSR), which allows for dynamic streaming updates to a sparse matrix. A new method for parallel sparse matrix-matrix multiplication (SpMM) that uses dynamic updates is also presented

    Probabilistic three-dimensional object tracking based on adaptive depth segmentation

    Get PDF
    Object tracking is one of the fundamental topics of computer vision with diverse applications. The arising challenges in tracking, i.e., cluttered scenes, occlusion, complex motion, and illumination variations have motivated utilization of depth information from 3D sensors. However, current 3D trackers are not applicable to unconstrained environments without a priori knowledge. As an important object detection module in tracking, segmentation subdivides an image into its constituent regions. Nevertheless, the existing range segmentation methods in literature are difficult to implement in real-time due to their slow performance. In this thesis, a 3D object tracking method based on adaptive depth segmentation and particle filtering is presented. In this approach, the segmentation method as the bottom-up process is combined with the particle filter as the top-down process to achieve efficient tracking results under challenging circumstances. The experimental results demonstrate the efficiency, as well as robustness of the tracking algorithm utilizing real-world range information

    Interaction networks for the identification of boosted HbbH\to b\overline{b} decays

    Get PDF
    We develop an algorithm based on an interaction network to identify high-transverse-momentum Higgs bosons decaying to bottom quark-antiquark pairs and distinguish them from ordinary jets that reflect the configurations of quarks and gluons at short distances. The algorithm's inputs are features of the reconstructed charged particles in a jet and the secondary vertices associated with them. Describing the jet shower as a combination of particle-to-particle and particle-to-vertex interactions, the model is trained to learn a jet representation on which the classification problem is optimized. The algorithm is trained on simulated samples of realistic LHC collisions, released by the CMS Collaboration on the CERN Open Data Portal. The interaction network achieves a drastic improvement in the identification performance with respect to state-of-the-art algorithms.Comment: 20 pages, 8 figures, 6 tables, version published in PR

    Improving Efficiency in Deep Learning for Large Scale Visual Recognition

    Get PDF
    The emerging recent large scale visual recognition methods, and in particular the deep Convolutional Neural Networks (CNN), are promising to revolutionize many computer vision based artificial intelligent applications, such as autonomous driving and online image retrieval systems. One of the main challenges in large scale visual recognition is the complexity of the corresponding algorithms. This is further exacerbated by the fact that in most real-world scenarios they need to run in real time and on platforms that have limited computational resources. This dissertation focuses on improving the efficiency of such large scale visual recognition algorithms from several perspectives. First, to reduce the complexity of large scale classification to sub-linear with the number of classes, a probabilistic label tree framework is proposed. A test sample is classified by traversing the label tree from the root node. Each node in the tree is associated with a probabilistic estimation of all the labels. The tree is learned recursively with iterative maximum likelihood optimization. Comparing to the hard label partition proposed previously, the probabilistic framework performs classification more accurately with similar efficiency. Second, we explore the redundancy of parameters in Convolutional Neural Networks (CNN) and employ sparse decomposition to significantly reduce both the amount of parameters and computational complexity. Both inter-channel and inner-channel redundancy is exploit to achieve more than 90\% sparsity with approximately 1\% drop of classification accuracy. We also propose a CPU based efficient sparse matrix multiplication algorithm to reduce the actual running time of CNN models with sparse convolutional kernels. Third, we propose a multi-stage framework based on CNN to achieve better efficiency than a single traditional CNN model. With a combination of cascade model and the label tree framework, the proposed method divides the input images in both the image space and the label space, and processes each image with CNN models that are most suitable and efficient. The average complexity of the framework is significantly reduced, while the overall accuracy remains the same as in the single complex model

    Optical Delay Interferometers and their Application for Self-coherent Detection

    Get PDF
    Self-coherent receivers are promising candidates for reception of 100 Gbit/s data rates in optical networks. Self-coherent receivers consist of multiple optical delay interferometers (DI) with high-speed photodiodes attached to the outputs. By DSP of the photo currents it becomes possible to receive coherently modulated optical signals. Especially promising for 100 Gbit/s networks is the PolMUX DQPSK format, the self-coherent reception of which is described in detail

    Advanced DSP Techniques for High-Capacity and Energy-Efficient Optical Fiber Communications

    Get PDF
    The rapid proliferation of the Internet has been driving communication networks closer and closer to their limits, while available bandwidth is disappearing due to an ever-increasing network load. Over the past decade, optical fiber communication technology has increased per fiber data rate from 10 Tb/s to exceeding 10 Pb/s. The major explosion came after the maturity of coherent detection and advanced digital signal processing (DSP). DSP has played a critical role in accommodating channel impairments mitigation, enabling advanced modulation formats for spectral efficiency transmission and realizing flexible bandwidth. This book aims to explore novel, advanced DSP techniques to enable multi-Tb/s/channel optical transmission to address pressing bandwidth and power-efficiency demands. It provides state-of-the-art advances and future perspectives of DSP as well
    corecore