7,515 research outputs found

    A reusable iterative optimization software library to solve combinatorial problems with approximate reasoning

    Get PDF
    Real world combinatorial optimization problems such as scheduling are typically too complex to solve with exact methods. Additionally, the problems often have to observe vaguely specified constraints of different importance, the available data may be uncertain, and compromises between antagonistic criteria may be necessary. We present a combination of approximate reasoning based constraints and iterative optimization based heuristics that help to model and solve such problems in a framework of C++ software libraries called StarFLIP++. While initially developed to schedule continuous caster units in steel plants, we present in this paper results from reusing the library components in a shift scheduling system for the workforce of an industrial production plant.Comment: 33 pages, 9 figures; for a project overview see http://www.dbai.tuwien.ac.at/proj/StarFLIP

    Ant Colony Optimization Toward Feature Selection

    Get PDF

    Ant Colony Optimization

    Get PDF
    Ant Colony Optimization (ACO) is the best example of how studies aimed at understanding and modeling the behavior of ants and other social insects can provide inspiration for the development of computational algorithms for the solution of difficult mathematical problems. Introduced by Marco Dorigo in his PhD thesis (1992) and initially applied to the travelling salesman problem, the ACO field has experienced a tremendous growth, standing today as an important nature-inspired stochastic metaheuristic for hard optimization problems. This book presents state-of-the-art ACO methods and is divided into two parts: (I) Techniques, which includes parallel implementations, and (II) Applications, where recent contributions of ACO to diverse fields, such as traffic congestion and control, structural optimization, manufacturing, and genomics are presented

    A hybrid e-learning framework: Process-based, semantically-enriched and service-oriented

    Get PDF
    Despite the recent innovations in e-Learning, much development is needed to ensure better learning experience for everyone and bridge the research gap in the current state of the art e-Learning artefacts. Contemporary e-learning artefacts possess various limitations as follows. First, they offer inadequate variations of adaptivity, since their recommendations are limited to e-learning resources, peers or communities. Second, they are often overwhelmed with technology at the expense of proper pedagogy and learning theories underpinning e-learning practices. Third, they do not comprehensively capture the e-learning experiences as their focus shifts to e-learning activities instead of e-learning processes. In reality, learning is a complex process that includes various activities and interactions between different roles to achieve certain gaols in a continuously evolving environment. Fourth, they tend more towards legacy systems and lack the agility and flexibility in their structure and design. To respond to the above limitations, this research aims at investigating the effectiveness of combining three advanced technologies (i.e., Business Process Modelling and Enactment, Semantics and Service Oriented Computing – SOC–) with learning pedagogy in order to enhance the e-learner experience. The key design artefact of this research is the development of the HeLPS e-Learning Framework – Hybrid e-Learning Framework that is Process-based, Semantically-enriched and Service Oriented-enabled. In this framework, a generic e-learning process has been developed bottom-up based on surveying a wide range of e-learning models (i.e., practical artefacts) and their underpinning pedagogies/concepts (i.e., theories); and then forming a generic e-learning process. Furthermore, an e-Learning Meta-Model has been developed in order to capture the semantics of e-learning domain and its processes. Such processes have been formally modelled and dynamically enacted using a service-oriented enabled architecture. This framework has been evaluated using a concern-based evaluation employing both static and dynamic approaches. The HeLPS e-Learning Framework along with its components have been evaluated by applying a data-driven approach and artificially-constructed case study to check its effectiveness in capturing the semantics, enriching e-learning processes and deriving services that can enhance the e-learner experience. Results revealed the effectiveness of combining the above-mentioned technologies in order to enhance the e-learner experience. Also, further research directions have been suggested.This research contributes to enhancing the e-learner experience by making the e-learning artefacts driven by pedagogy and informed by the latest technologies. One major novel contribution of this research is the introduction of a layered architectural framework (i.e., HeLPS) that combines business process modelling and enactment, semantics and SOC together. Another novel contribution is adopting the process-based approach in e-learning domain through: identifying these processes and developing a generic business process model from a set of related e-learning business process models that have the same goals and associated objectives. A third key contribution is the development of the e-Learning Meta-Model, which captures a high-abstract view of learning domain and encapsulates various domain rules using the Semantic Web Rule Language. Additional contribution is promoting the utilisation of Service-Orientation in e-learning through developing a semantically-enriched approach to identify and discover web services from e-learning business process models. Fifth, e-Learner Experience Model (eLEM) and e-Learning Capability Maturity Model (eLCMM) have been developed, where the former aims at identifying and quantifying the e-learner experience and the latter represents a well-defined evolutionary plateau towards achieving a mature e-learning process from a technological perspective. Both models have been combined with a new developed data-driven Validation and Verification Model to develop a Concern-based Evaluation Approach for e-Learning artefacts, which is considered as another contribution

    Forecasting ozone threshold exceedances in urban background areas using supervised classification and easy-access information

    Get PDF
    Classification models to forecast exceedance of the ozone (O3) threshold established by European legislation are rare in literature, as is the focus on background O3, with higher concentrations at city outskirts. This study evaluated the performance of nine classifiers to forecast this threshold exceedance by background O3. Models used five large hourly background O3 data sets (2006–2015), and included temporal features describing the O3 formation dynamic. Bagging and stacking ensembles of such classifiers and their cost of learning were also evaluated. C5.0 and nnet classifiers achieved the best forecasting performance, even at imbalanced learning. Bagging ensembles outperformed stacking approaches, although with little accuracy improvement as compared to classifiers. The cost of learning evidenced similar performance results from reduced fractions of original data sets. The use of these models to forecast background O3 threshold exceedances are encouraged due to the performances obtained and to their easy reproducibilit
    corecore