593 research outputs found

    ConceptBase.cc User Manual Version 7.3

    Get PDF

    Mixed labeling: Integration of internal and external labeling

    Get PDF
    Tato diplomová práce se zabývá automatickým rozmístěním popisků. Popisky mohou být umístěny přes daný objekt (angl. Internal Labelig) či vedle daného objektu (angl. External Labeling), přičemž jsou s ním spojeny čárou. V této práci se pokouším zkombinovat tyto dva přístupy a popisky umísťovat smíšeně. Zároveň se snažím popisky umístěné vně objektu umístit tak, aby k jejich asociaci s ním nebyla čára potřebná. V textu práce nejprve uvádím existující přístupy k této problematice. Následně analyzuji problémy spojené se smíšeným umísťováním popisků a na základně analýzy provádím implementaci. Funkčnost algoritmu je otestována na šesti modelech. Se třemi z nich je provedena uživatelská studie.This master thesis focuses on automatic label placement. Labels can be positioned over a given object (Internal Labeling) or next to it and connected by a line (External Labeling). I attempt to combine the two methods and position the labels in a mixed fashion. When I place the label next to the object, I try to pick such a position, that the line to connect it is not necessary. First, I present existing methods in the text. Subsequently, I analyze the problems related to mixed label placement. I carry out the implementation based on the analysis and test it with six models of various complexity. I evaluate with users in the end

    Generating renderers

    Get PDF
    Most production renderers developed for the film industry are huge pieces of software that are able to render extremely complex scenes. Unfortunately, they are implemented using the currently available programming models that are not well suited to modern computing hardware like CPUs with vector units or GPUs. Thus, they have to deal with the added complexity of expressing parallelism and using hardware features in those models. Since compilers cannot alone optimize and generate efficient programs for any type of hardware, because of the large optimization spaces and the complexity of the underlying compiler problems, programmers have to rely on compiler-specific hardware intrinsics or write non-portable code. The consequence of these limitations is that programmers resort to writing the same code twice when they need to port their algorithm on a different architecture, and that the code itself becomes difficult to maintain, as algorithmic details are buried under hardware details. Thankfully, there are solutions to this problem, taking the form of Domain-Specific Lan- guages. As their name suggests, these languages are tailored for one domain, and compilers can therefore use domain-specific knowledge to optimize algorithms and choose the best execution policy for a given target hardware. In this thesis, we opt for another way of encoding domain- specific knowledge: We implement a generic, high-level, and declarative rendering and traversal library in a functional language, and later refine it for a target machine by providing partial evaluation annotations. The partial evaluator then specializes the entire renderer according to the available knowledge of the scene: Shaders are specialized when their inputs are known, and in general, all redundant computations are eliminated. Our results show that the generated renderers are faster and more portable than renderers written with state-of-the-art competing libraries, and that in comparison, our rendering library requires less implementation effort.Die meisten in der Filmindustrie zum Einsatz kommenden Renderer sind riesige Softwaresysteme, die in der Lage sind, extrem aufwendige Szenen zu rendern. Leider sind diese mit den aktuell verfügbaren Programmiermodellen implementiert, welche nicht gut geeignet sind für moderne Rechenhardware wie CPUs mit Vektoreinheiten oder GPUs. Deshalb müssen Entwickler sich mit der zusätzlichen Komplexität auseinandersetzen, Parallelismus und Hardwarefunktionen in diesen Programmiermodellen auszudrücken. Da Compiler nicht selbständig optimieren und effiziente Programme für jeglichen Typ Hardware generieren können, wegen des großen Optimierungsraumes und der Komplexität des unterliegenden Kompilierungsproblems, müssen Programmierer auf Compiler-spezifische Hardware-“Intrinsics” zurückgreifen, oder nicht portierbaren Code schreiben. Die Konsequenzen dieser Limitierungen sind, dass Programmierer darauf zurückgreifen den gleichen Code zweimal zu schreiben, wenn sie ihre Algorithmen für eine andere Architektur portieren müssen, und dass der Code selbst schwer zu warten wird, da algorithmische Details unter Hardwaredetails verloren gehen. Glücklicherweise gibt es Lösungen für dieses Problem, in der Form von DSLs. Diese Sprachen sind maßgeschneidert für eine Domäne und Compiler können deshalb Domänenspezifisches Wissen nutzen, um Algorithmen zu optimieren und die beste Ausführungsstrategie für eine gegebene Zielhardware zu wählen. In dieser Dissertation wählen wir einen anderen Weg, Domänenspezifisches Wissen zu enkodieren: Wir implementieren eine generische, high-level und deklarative Rendering- und Traversierungsbibliothek in einer funktionalen Programmiersprache, und verfeinern sie später für eine Zielmaschine durch Bereitstellung von Annotationen für die partielle Auswertung. Der “Partial Evaluator” spezialisiert dann den kompletten Renderer, basierend auf dem verfügbaren Wissen über die Szene: Shader werden spezialisiert, wenn ihre Eingaben bekannt sind, und generell werden alle redundanten Berechnungen eliminiert. Unsere Ergebnisse zeigen, dass die generierten Renderer schneller und portierbarer sind, als Renderer geschrieben mit den aktuellen Techniken konkurrierender Bibliotheken und dass, im Vergleich, unsere Rendering Bibliothek weniger Implementierungsaufwand erfordert.This work was supported by the Federal Ministry of Education and Research (BMBF) as part of the Metacca and ProThOS projects as well as by the Intel Visual Computing Institute (IVCI) and Cluster of Excellence on Multimodal Computing and Interaction (MMCI) at Saarland University. Parts of it were also co-funded by the European Union(EU), as part of the Dreamspace project

    Dynamic Binary Translation for Embedded Systems with Scratchpad Memory

    Get PDF
    Embedded software development has recently changed with advances in computing. Rather than fully co-designing software and hardware to perform a relatively simple task, nowadays embedded and mobile devices are designed as a platform where multiple applications can be run, new applications can be added, and existing applications can be updated. In this scenario, traditional constraints in embedded systems design (i.e., performance, memory and energy consumption and real-time guarantees) are more difficult to address. New concerns (e.g., security) have become important and increase software complexity as well. In general-purpose systems, Dynamic Binary Translation (DBT) has been used to address these issues with services such as Just-In-Time (JIT) compilation, dynamic optimization, virtualization, power management and code security. In embedded systems, however, DBT is not usually employed due to performance, memory and power overhead. This dissertation presents StrataX, a low-overhead DBT framework for embedded systems. StrataX addresses the challenges faced by DBT in embedded systems using novel techniques. To reduce DBT overhead, StrataX loads code from NAND-Flash storage and translates it into a Scratchpad Memory (SPM), a software-managed on-chip SRAM with limited capacity. SPM has similar access latency as a hardware cache, but consumes less power and chip area. StrataX manages SPM as a software instruction cache, and employs victim compression and pinning to reduce retranslation cost and capture frequently executed code in the SPM. To prevent performance loss due to excessive code expansion, StrataX minimizes the amount of code inserted by DBT to maintain control of program execution. When a hardware instruction cache is available, StrataX dynamically partitions translated code among the SPM and main memory. With these techniques, StrataX has low performance overhead relative to native execution for MiBench programs. Further, it simplifies embedded software and hardware design by operating transparently to applications without any special hardware support. StrataX achieves sufficiently low overhead to make it feasible to use DBT in embedded systems to address important design goals and requirements

    AIMES: advanced computation and I/O methods for earth-system simulations

    Get PDF
    Dealing with extreme scale Earth-system models is challenging from the computer science perspective, as the required computing power and storage capacity are steadily increasing. Scientists perform runs with growing resolution or aggregate results from many similar smaller-scale runs with slightly different initial conditions (the so-called ensemble runs). In the fifth Coupled Model Intercomparison Project (CMIP5), the produced datasets require more than three Petabytes of storage and the compute and storage requirements are increasing significantly for CMIP6. Climate scientists across the globe are developing next-generation models based on improved numerical formulation leading to grids that are discretized in alternative forms such as an icosahedral (geodesic) grid. The developers of these models face similar problems in scaling, maintaining and optimizing code. Performance portability and the maintainability of code are key concerns of scientists as, compared to industry projects, model code is continuously revised and extended to incorporate further levels of detail. This leads to a rapidly growing code base that is rarely refactored. However, code modernization is important to maintain productivity of the scientist working with the code and for utilizing performance provided by modern and future architectures. The need for performance optimization is motivated by the evolution of the parallel architecture landscape from homogeneous flat machines to heterogeneous combinations of processors with deep memory hierarchy. Notably, the rise of many-core, throughput-oriented accelerators, such as GPUs, requires non-trivial code changes at minimum and, even worse, may necessitate a substantial rewrite of the existing codebase. At the same time, the code complexity increases the difficulty for computer scientists and vendors to understand and optimize the code for a given system. Storing the products of climate predictions requires a large storage and archival system which is expensive. Often, scientists restrict the number of scientific variables and write interval to keep the costs balanced. Compression algorithms can reduce the costs significantly but can also increase the scientific yield of simulation runs. In the AIMES project, we addressed the key issues of programmability, computational efficiency and I/O limitations that are common in next-generation icosahedral earth-system models. The project focused on the separation of concerns between domain scientist, computational scientists, and computer scientists
    corecore