4,804 research outputs found

    Vision systems with the human in the loop

    Get PDF
    The emerging cognitive vision paradigm deals with vision systems that apply machine learning and automatic reasoning in order to learn from what they perceive. Cognitive vision systems can rate the relevance and consistency of newly acquired knowledge, they can adapt to their environment and thus will exhibit high robustness. This contribution presents vision systems that aim at flexibility and robustness. One is tailored for content-based image retrieval, the others are cognitive vision systems that constitute prototypes of visual active memories which evaluate, gather, and integrate contextual knowledge for visual analysis. All three systems are designed to interact with human users. After we will have discussed adaptive content-based image retrieval and object and action recognition in an office environment, the issue of assessing cognitive systems will be raised. Experiences from psychologically evaluated human-machine interactions will be reported and the promising potential of psychologically-based usability experiments will be stressed

    Using Pinch Gloves(TM) for both Natural and Abstract Interaction Techniques in Virtual Environments

    Get PDF
    Usable three-dimensional (3D) interaction techniques are difficult to design, implement, and evaluate. One reason for this is a poor understanding of the advantages and disadvantages of the wide range of 3D input devices, and of the mapping between input devices and interaction techniques. We present an analysis of Pinch Gloves™ and their use as input devices for virtual environments (VEs). We have developed a number of novel and usable interaction techniques for VEs using the gloves, including a menu system, a technique for text input, and a two-handed navigation technique. User studies have indicated the usability and utility of these techniques

    Exploring the Front Touch Interface for Virtual Reality Headsets

    Full text link
    In this paper, we propose a new interface for virtual reality headset: a touchpad in front of the headset. To demonstrate the feasibility of the front touch interface, we built a prototype device, explored VR UI design space expansion, and performed various user studies. We started with preliminary tests to see how intuitively and accurately people can interact with the front touchpad. Then, we further experimented various user interfaces such as a binary selection, a typical menu layout, and a keyboard. Two-Finger and Drag-n-Tap were also explored to find the appropriate selection technique. As a low-cost, light-weight, and in low power budget technology, a touch sensor can make an ideal interface for mobile headset. Also, front touch area can be large enough to allow wide range of interaction types such as multi-finger interactions. With this novel front touch interface, we paved a way to new virtual reality interaction methods

    Gestures in Machine Interaction

    Full text link
    Vnencumbered-gesture-interaction (VGI) describes the use of unrestricted gestures in machine interaction. The development of such technology will enable users to interact with machines and virtual environments by performing actions like grasping, pinching or waving without the need of peripherals. Advances in image-processing and pattern recognition make such interaction viable and in some applications more practical than current modes of keyboard, mouse and touch-screen interaction provide. VGI is emerging as a popular topic amongst Human-Computer Interaction (HCI), Computer-vision and gesture research; and is developing into a topic with potential to significantly impact the future of computer-interaction, robot-control and gaming. This thesis investigates whether an ergonomic model of VGI can be developed and implemented on consumer devices by considering some of the barriers currently preventing such a model of VGI from being widely adopted. This research aims to address the development of freehand gesture interfaces and accompanying syntax. Without the detailed consideration of the evolution of this field the development of un-ergonomic, inefficient interfaces capable of placing undue strain on interface users becomes more likely. In the course of this thesis some novel design and methodological assertions are made. The Gesture in Machine Interaction (GiMI) syntax model and the Gesture-Face Layer (GFL), developed in the course of this research, have been designed to facilitate ergonomic gesture interaction. The GiMI is an interface syntax model designed to enable cursor control, browser navigation commands and steering control for remote robots or vehicles. Through applying state-of-the-art image processing that facilitates three-dimensional (3D) recognition of human action, this research investigates how interface syntax can incorporate the broadest range of human actions. By advancing our understanding of ergonomic gesture syntax, this research aims to assist future developers evaluate the efficiency of gesture interfaces, lexicons and syntax

    Natural User Interface for Education in Virtual Environments

    Get PDF
    Education and self-improvement are key features of human behavior. However, learning in the physical world is not always desirable or achievable. That is how simulators came to be. There are domains where purely virtual simulators can be created in contrast to physical ones. In this research we present a novel environment for learning, using a natural user interface. We, humans, are not designed to operate and manipulate objects via keyboard, mouse or a controller. The natural way of interaction and communication is achieved through our actuators (hands and feet) and our sensors (hearing, vision, touch, smell and taste). That is the reason why it makes more sense to use sensors that can track our skeletal movements, are able to estimate our pose, and interpret our gestures. After acquiring and processing the desired – natural input, a system can analyze and translate those gestures into movement signals
    corecore