790 research outputs found

    NEXT LEVEL: A COURSE RECOMMENDER SYSTEM BASED ON CAREER INTERESTS

    Get PDF
    Skills-based hiring is a talent management approach that empowers employers to align recruitment around business results, rather than around credentials and title. It starts with employers identifying the particular skills required for a role, and then screening and evaluating candidates’ competencies against those requirements. With the recent rise in employers adopting skills-based hiring practices, it has become integral for students to take courses that improve their marketability and support their long-term career success. A 2017 survey of over 32,000 students at 43 randomly selected institutions found that only 34% of students believe they will graduate with the skills and knowledge required to be successful in the job market. Furthermore, the study found that while 96% of chief academic officers believe that their institutions are very or somewhat effective at preparing students for the workforce, only 11% of business leaders strongly agree [11]. An implication of the misalignment is that college graduates lack the skills that companies need and value. Fortunately, the rise of skills-based hiring provides an opportunity for universities and students to establish and follow clearer classroom-to-career pathways. To this end, this paper presents a course recommender system that aims to improve students’ career readiness by suggesting relevant skills and courses based on their unique career interests

    Estimating Optimal Weights in Hybrid Recommender Systems

    Get PDF

    The design and study of pedagogical paper recommendation

    Get PDF
    For learners engaging in senior-level courses, tutors in many cases would like to pick some articles as supplementary reading materials for them each week. Unlike researchers ‘Googling’ papers from the Internet, tutors, when making recommendations, should consider course syllabus and their assessment of learners along many dimensions. As such, simply ‘Googling’ articles from the Internet is far from enough. That is, learner models of each individual, including their learning interest, knowledge, goals, etc. should be considered when making paper recommendations, since the recommendation should be carried out so as to ensure that the suitability of a paper for a learner is calculated as the summation of the fitness of the appropriateness of it to help the learner in general. This type of the recommendation is called a Pedagogical Paper Recommender.In this thesis, we propose a set of recommendation methods for a Pedagogical Paper Recommender and study the various important issues surrounding it. Experimental studies confirm that making recommendations to learners in social learning environments is not the same as making recommendation to users in commercial environments such as Amazon.com. In such learning environments, learners are willing to accept items that are not interesting, yet meet their learning goals in some way or another; learners’ overall impression towards each paper is not solely dependent on the interestingness of the paper, but also other factors, such as the degree to which the paper can help to meet their ‘cognitive’ goals.It is also observed that most of the recommendation methods are scalable. Although the degree of this scalability is still unclear, we conjecture that those methods are consistent to up to 50 papers in terms of recommendation accuracy. The experiments conducted so far and suggestions made on the adoption of recommendation methods are based on the data we have collected during one semester of a course. Therefore, the generality of results needs to undergo further validation before more certain conclusion can be drawn. These follow up studies should be performed (ideally) in more semesters on the same course or related courses with more newly added papers. Then, some open issues can be further investigated. Despite these weaknesses, this study has been able to reach the research goals set out in the proposed pedagogical paper recommender which, although sounding intuitive, unfortunately has been largely ignored in the research community. Finding a ‘good’ paper is not trivial: it is not about the simple fact that the user will either accept the recommended items, or not; rather, it is a multiple step process that typically entails the users navigating the paper collections, understanding the recommended items, seeing what others like/dislike, and making decisions. Therefore, a future research goal to proceed from the study here is to design for different kinds of social navigation in order to study their respective impacts on user behavior, and how over time, user behavior feeds back to influence the system performance

    A novel hybrid recommendation system for library book selection

    Get PDF
    Abstract. Increasing number of books published in a year and decreasing budgets have made collection development increasingly difficult in libraries. Despite the data to help decision making being available in the library systems, the librarians have little means to utilize the data. In addition, modern key technologies, such as machine learning, that generate more value out data have not yet been utilized in the field of libraries to their full extent. This study was set to discover a way to build a recommendation system that could help librarians who are struggling with book selection process. This thesis proposed a novel hybrid recommendation system for library book selection. The data used to build the system consisted of book metadata and book circulation data of books located in Joensuu City Library’s adult fiction collection. The proposed system was based on both rule-based components and a machine learning model. The user interface for the system was build using web technologies so that the system could be used via using web browser. The proposed recommendation system was evaluated using two different methods: automated tests and focus group methodology. The system achieved an accuracy of 79.79% and F1 score of 0.86 in automated tests. Uncertainty rate of the system was 27.87%. With these results in automated tests, the proposed system outperformed baseline machine learning models. The main suggestions that were gathered from focus group evaluation were that while the proposed system was found interesting, librarians thought it would need more features and configurability in order to be usable in real world scenarios. Results indicate that making good quality recommendations using book metadata is challenging because the data is high dimensional categorical data by its nature. Main implications of the results are that recommendation systems in domain of library collection development should focus on data pre-processing and feature engineering. Further investigation is suggested to be carried out regarding knowledge representation

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    Recommender systems in industrial contexts

    Full text link
    This thesis consists of four parts: - An analysis of the core functions and the prerequisites for recommender systems in an industrial context: we identify four core functions for recommendation systems: Help do Decide, Help to Compare, Help to Explore, Help to Discover. The implementation of these functions has implications for the choices at the heart of algorithmic recommender systems. - A state of the art, which deals with the main techniques used in automated recommendation system: the two most commonly used algorithmic methods, the K-Nearest-Neighbor methods (KNN) and the fast factorization methods are detailed. The state of the art presents also purely content-based methods, hybridization techniques, and the classical performance metrics used to evaluate the recommender systems. This state of the art then gives an overview of several systems, both from academia and industry (Amazon, Google ...). - An analysis of the performances and implications of a recommendation system developed during this thesis: this system, Reperio, is a hybrid recommender engine using KNN methods. We study the performance of the KNN methods, including the impact of similarity functions used. Then we study the performance of the KNN method in critical uses cases in cold start situation. - A methodology for analyzing the performance of recommender systems in industrial context: this methodology assesses the added value of algorithmic strategies and recommendation systems according to its core functions.Comment: version 3.30, May 201

    A hybrid recommender system for improving automatic playlist continuation

    Get PDF
    Although widely used, the majority of current music recommender systems still focus on recommendations’ accuracy, userpreferences and isolated item characteristics, without evaluating other important factors, like the joint item selections and the recommendation moment. However, when it comes to playlist recommendations, additional dimensions, as well as the notion of user experience and perception, should be taken into account to improve recommendations’ quality. In this work, HybA, a hybrid recommender system for automatic playlist continuation, that combines Latent Dirichlet Allocation and Case-Based Reasoning, is proposed. This system aims to address “similar concepts” rather than similar users. More than generating a playlist based on user requirements, like automatic playlist generation methods, HybA identifies the semantic characteristics of a started playlist and reuses the most similar past ones, to recommend relevant playlist continuations. In addition, support to beyond accuracy dimensions, like increased coherence or diverse items’ discovery, is provided. To overcome the semantic gap between music descriptions and user preferences, identify playlist structures and capture songs’ similarity, a graph model is used. Experiments on real datasets have shown that the proposed algorithm is able to outperform other state of the art techniques, in terms of accuracy, while balancing between diversity and coherence.This work has been partially supported by the Catalan Agency for Management of University and Research Grants (AGAUR) (2017 SGR 574), by the European Regional Development Fund (ERDF), through the Incentive System to Research and Technological development, within the Portugal2020 Competitiveness and Internationalization Operational Program –COMPETE 2020– (POCI-01-0145-FEDER006961), and by the Portuguese Foundation for Science and Technology (FCT) (UID/EEA/50014/2013).Peer ReviewedPostprint (author's final draft

    PICAE – Intelligent publication of audiovisual and editorial contents

    Get PDF
    The development in internet infrastructure and technology in last tow decades have given users and retailers the possibility to purchase and sell items online. This has of course broadened the horizons of what products can be offered outside of the traditional trading sense, to the point where virtually any product can be offered. These massive online markets have had a considerable impact on the habits of consumers, providing them access to a greater variety of products and information on these goods. This variety has made online commerce into a multi-billion dollar industry but it has also put the customer in a position where it is getting increasingly difficult to select the products that best fit their individual needs. In the same vein, the rise of both availability and the amounts of data that computers have been able to process in the last decades have allowed for many solutions that are computationally expensive to exist, and recommender systems are no exception. These systems are the perfect tools to overcome the information overload problem since they provide automated and personalized suggestions to consumers. The PICAE project tackles the recommendation problem in the audiovisual sector. The vast amount of audiovisual content that is available nowadays to the user can be overwhelming, which is why recommenders have been increasingly growing in popularity in this sector ---Netflix being the biggest example. PICAE seeks to provide insightful and personalized recommendations to users in a public TV setting. The PICAE project develops new models and analytical tools for recommending audiovisual and editorial content with the aim of improving the user experience, based on their profile and environment, and the level of satisfaction and loyalty. These new tools represent a qualitative improvement in the state of the art of television and editorial content recommendation. On the other hand, the project also improves the digital consumption index of these contents based on the identification of products that these new forms of consumption demand and how they must be produced, distributed and promoted to respond to the needs of this emerging market. The main challenge of the PICAE project is to resolve two differentiating aspects with respect to other existing solutions such as: variety and dynamic contents that requires a real-time analysis of the recommendation and the lack of available information about the user, who in these areas is reluctant to register, making it difficult to identify in multi-device consumption. This document will explain the contributions made in the development of the project, which can be divided in two: the development of the project, which can be divided in two: the development of a recommender system that takes into account information of both users and items and a deep analysis of the current metrics used to assess the performance of a recommender system

    Dynamic generation of personalized hybrid recommender systems

    Get PDF
    • 

    corecore