110 research outputs found

    In silico assessment of genetic variation in KCNA5 reveals multiple mechanisms of human atrial arrhythmogenesis

    Get PDF
    A recent experimental study investigating patients with lone atrial fibrillation identified six novel mutations in the KCNA5 gene. The mutants exhibited both gain- and loss-of-function of the atrial specific ultra-rapid delayed rectifier K+ current, IKur. The aim of this study is to elucidate and quantify the functional impact of these KCNA5 mutations on atrial electrical activity. A multi-scale model of the human atria was updated to incorporate detailed experimental data on IKur from both wild-type and mutants. The effects of the mutations on human atrial action potential and rate dependence were investigated at the cellular level. In tissue, we assessed the effects of the mutations on the vulnerability to unidirectional conduction patterns and dynamics of re-entrant excitation waves. Gain-of-function mutations shortened the action potential duration in single cells, and stabilised and accelerated re-entrant excitation in tissue. Loss-of-function mutations had heterogeneous effects on action potential duration and promoted early-after-depolarisations following beta-adrenergic stimulation. In the tissue model, loss-of-function mutations facilitated breakdown of excitation waves at more physiological excitation rates than the wild-type, and the generation of early-after-depolarisations promoted unidirectional patterns of excitation. Gain- and loss-of-function IKur mutations produced multiple mechanisms of atrial arrhythmogenesis, with significant differences between the two groups of mutations. This study provides new insights into understanding the mechanisms by which mutant IKur contributes to atrial arrhythmias. In addition, as IKur is an atrial-specific channel and a number of IKur-selective blockers have been developed as anti-AF agents, this study also helps to understand some contradictory results on both pro- and anti-arrhythmic effects of blocking IKur

    25 years of basic and translational science in EP Europace: novel insights into arrhythmia mechanisms and therapeutic strategies.

    Get PDF
    In the last 25 years, EP Europace has published more than 300 basic and translational science articles covering different arrhythmia types (ranging from atrial fibrillation to ventricular tachyarrhythmias), different diseases predisposing to arrhythmia formation (such as genetic arrhythmia disorders and heart failure), and different interventional and pharmacological anti-arrhythmic treatment strategies (ranging from pacing and defibrillation to different ablation approaches and novel drug-therapies). These studies have been conducted in cellular models, small and large animal models, and in the last couple of years increasingly in silico using computational approaches. In sum, these articles have contributed substantially to our pathophysiological understanding of arrhythmia mechanisms and treatment options; many of which have made their way into clinical applications. This review discusses a representative selection of EP Europace manuscripts covering the topics of pacing and ablation, atrial fibrillation, heart failure and pro-arrhythmic ventricular remodelling, ion channel (dys)function and pharmacology, inherited arrhythmia syndromes, and arrhythmogenic cardiomyopathies, highlighting some of the advances of the past 25 years. Given the increasingly recognized complexity and multidisciplinary nature of arrhythmogenesis and continued technological developments, basic and translational electrophysiological research is key advancing the field. EP Europace aims to further increase its contribution to the discovery of arrhythmia mechanisms and the implementation of mechanism-based precision therapy approaches in arrhythmia management

    Atrial arrhythmogenicity of KCNJ2 mutations in short QT syndrome:Insights from virtual human atria

    Get PDF
    Gain-of-function mutations in KCNJ2-encoded Kir2.1 channels underlie variant 3 (SQT3) of the short QT syndrome, which is associated with atrial fibrillation (AF). Using biophysically-detailed human atria computer models, this study investigated the mechanistic link between SQT3 mutations and atrial arrhythmogenesis, and potential ion channel targets for treatment of SQT3. A contemporary model of the human atrial action potential (AP) was modified to recapitulate functional changes in IK1 due to heterozygous and homozygous forms of the D172N and E299V Kir2.1 mutations. Wild-type (WT) and mutant formulations were incorporated into multi-scale homogeneous and heterogeneous tissue models. Effects of mutations on AP duration (APD), conduction velocity (CV), effective refractory period (ERP), tissue excitation threshold and their rate-dependence, as well as the wavelength of re-entry (WL) were quantified. The D172N and E299V Kir2.1 mutations produced distinct effects on IK1 and APD shortening. Both mutations decreased WL for re-entry through a reduction in ERP and CV. Stability of re-entrant excitation waves in 2D and 3D tissue models was mediated by changes to tissue excitability and dispersion of APD in mutation conditions. Combined block of IK1 and IKr was effective in terminating re-entry associated with heterozygous D172N conditions, whereas IKr block alone may be a safer alternative for the E299V mutation. Combined inhibition of IKr and IKur produced a synergistic anti-arrhythmic effect in both forms of SQT3. In conclusion, this study provides mechanistic insights into atrial proarrhythmia with SQT3 Kir2.1 mutations and highlights possible pharmacological strategies for management of SQT3-linked AF

    Circ Res

    Get PDF
    Atrial fibrillation (AF) is the most common sustained arrhythmia in humans. The mechanisms that govern AF initiation and persistence are highly complex, of dynamic nature, and involve interactions across multiple temporal and spatial scales in the atria. This article aims to review the mathematical modeling and computer simulation approaches to understanding AF mechanisms and aiding in its management. Various atrial modeling approaches are presented, with descriptions of the methodological basis and advancements in both lower-dimensional and realistic geometry models. A review of the most significant mechanistic insights made by atrial simulations is provided. The article showcases the contributions that atrial modeling and simulation have made not only to our understanding of the pathophysiology of atrial arrhythmias, but also to the development of AF management approaches. A summary of the future developments envisioned for the field of atrial simulation and modeling is also presented. The review contends that computational models of the atria assembled with data from clinical imaging modalities that incorporate electrophysiological and structural remodeling could become a first line of screening for new AF therapies and approaches, new diagnostic developments, and new methods for arrhythmia prevention.DP1 HL123271/HL/NHLBI NIH HHS/United StatesDP1HL123271/DP/NCCDPHP CDC HHS/United States2015-04-25T00:00:00Z24763468PMC4043630vault:242

    Multiscale Modeling and Simulation of Human Heart Failure

    Full text link
    Tesis por compendio[EN] Heart failure (HF) constitutes a major public health problem worldwide. Operationally it is defined as a clinical syndrome characterized by the marked and progressive inability of the ventricles to fill and generate adequate cardiac output to meet the demands of cellular metabolism that may have significant variability in its etiology and it is the final common pathway of various cardiac pathologies. Much attention has been paid to the understanding of the arrhythmogenic mechanisms induced by the structural, electrical, and metabolic remodeling of the failing heart. Due to the complexity of the electrophysiological changes that may occur during heart failure, the scientific literature is complex and sometimes equivocal. Nevertheless, a number of common features of failing hearts have been documented. At the cellular level, prolongation of the action potential (AP) involving ion channel remodeling and alterations in calcium handling have been established as the hallmark characteristics of myocytes isolated from failing hearts. At the tissue level, intercellular uncoupling and fibrosis are identified as major arrhythmogenic factors. In this Thesis a computational model for cellular heart failure was proposed using a modified version of Grandi et al. model for human ventricular action potential that incorporates the formulation of the late sodium current (INaL) in order to study the arrhythmogenic processes due to failing phenotype. Experimental data from several sources were used to validate the model. Due to extensive literature in the subject a sensitivity analysis was performed to assess the influence of main ionic currents and parameters upon most related biomarkers. In addition, multiscale simulations were carried out to characterize this pathology (transmural cardiac fibres and tissues). The proposed model for the human INaL and the electrophysiological remodeling of myocytes from failing hearts accurately reproduce experimental observations. An enhanced INaL appears to be an important contributor to the electrophysiological phenotype and to the dysregulation of calcium homeostasis of failing myocytes. Our strand simulation results illustrate how the presence of M cells and heterogeneous electrophysiological remodeling in the human failing ventricle modulate the dispersion of action potential duration (APD) and repolarization time (RT). Conduction velocity (CV) and the safety factor for conduction (SF) were also reduced by the progressive structural remodeling during heart failure. In our transmural ventricular tissue simulations, no reentry was observed in normal conditions or in the presence of HF ionic remodeling. However, defined amount of fibrosis and/or cellular uncoupling were sufficient to elicit reentrant activity. Under conditions where reentry was generated, HF electrophysiological remodeling did not alter the width of the vulnerable window (VW). However, intermediate fibrosis and cellular uncoupling significantly widened the VW. In conclusion, enhanced fibrosis in failing hearts, as well as reduced intercellular coupling, combine to increase electrophysiological gradients and reduce electrical propagation. In that sense, structural remodeling is a key factor in the genesis of vulnerability to reentry, mainly at intermediates levels of fibrosis and intercellular uncoupling.[ES] La insuficiencia cardíaca (IC) constituye un importante problema de salud pública en todo el mundo. Operacionalmente se define como un síndrome clínico caracterizado por la incapacidad marcada y progresiva de los ventrículos para llenar y generar gasto cardíaco adecuado para satisfacer las demandas del metabolismo celular, que puede tener una variabilidad significativa en su etiología y es la vía final común de varias patologías cardíacas. Se ha prestado mucha atención a la comprensión de los mecanismos arritmogénicos inducidos por la remodelación estructural, eléctrica, y metabólica del corazón afectado de IC. Debido a la complejidad de los cambios electrofisiológicos que pueden ocurrir durante la IC, la literatura científica es compleja y, a veces equívoca. Sin embargo, se han documentado una serie de características comunes en corazones afectados de IC. A nivel celular, se han establecido como las características distintivas de los miocitos aislados de corazones afectados de IC la prolongación del potencial de acción (PA), que implica la remodelación de los canales iónicos y las alteraciones en la dinámica del calcio. A nivel de los tejidos, el desacoplamiento intercelular y la fibrosis se identifican como los principales factores arritmogénicos. En esta tesis se propuso un modelo celular computacional para la insuficiencia cardíaca utilizando una versión modificada del modelo de potencial de acción ventricular humano de Grandi y colaboradores que incorpora la formulación de la corriente tardía de sodio (INaL) con el fin de estudiar los procesos arritmogénicas debido al fenotipo de la IC. Los datos experimentales de varias fuentes se utilizaron para validar el modelo. Debido a la extensa literatura en la temática se realizó un análisis de sensibilidad para evaluar la influencia de las principales corrientes iónicas y los parámetros sobre los biomarcadores relacionados. Además, se llevaron a cabo simulaciones multiescala para caracterizar esta patología (en fibras y tejidos transmurales). El modelo propuesto para la corriente tardía de sodio y la remodelación electrofisiológica de los miocitos de corazones afectados de IC reprodujeron con precisión las observaciones experimentales. Una INaL incrementada parece ser un importante contribuyente al fenotipo electrofisiológico y la desregulación de la homeostasis del calcio de los miocitos afectados de IC. Nuestros resultados de la simulaciones en fibra ilustran cómo la presencia de células M y el remodelado electrofisiológico heterogéneo en el ventrículo humano afectado de IC modulan la dispersión de la duración potencial de acción (DPA) y el tiempo de repolarización (TR). La velocidad de conducción (VC) y el factor de seguridad para la conducción (FS) también se redujeron en la remodelación estructural progresiva durante la insuficiencia cardíaca. En nuestras simulaciones transmurales de tejido ventricular, no se observó reentrada en condiciones normales o en presencia de la remodelación iónica de la IC. Sin embargo, determinadas cantidades de fibrosis y / o desacoplamiento celular eran suficientes para provocar la actividad reentrante. En condiciones donde se había generado la reentrada, el remodelado electrofisiológico de la IC no alteró la anchura de la ventana vulnerable (VV). Sin embargo, niveles intermedios de fibrosis y el desacoplamiento celular ampliaron significativamente la VV. En conclusión, niveles elevados de fibrosis en corazones afectados de IC, así como la reducción de acoplamiento intercelular, se combinan para aumentar los gradientes electrofisiológicos y reducir la propagación eléctrica. En ese sentido, la remodelación estructural es un factor clave en la génesis de la vulnerabilidad a las reentradas, principalmente en niveles intermedios de fibrosis y desacoplamiento intercelular. El remodelado electrofisiológico promueve la arritmogénesis y puede ser alterado dependi[CA] La insuficiència cardíaca (IC) constitueix un important problema de salut pública arreu del món. A efectes pràctics, es defineix com una síndrome clínica caracteritzada per la incapacitat marcada i progressiva dels ventricles per omplir i generar el cabal cardíac adequat, per tal de satisfer les demandes del metabolisme cel·lular, el qual pot tenir una variabilitat significativa en la seua etiologia i és la via final comuna de diverses patologies cardíaques. S'ha prestat molta atenció a la comprensió dels mecanismes aritmogènics induïts per la remodelació estructural, elèctrica, i metabòlica del cor afectat d'IC. A causa de la complexitat dels canvis electrofisiològics que poden ocórrer durant la IC, trobem que la literatura científica és complexa i, de vegades, equívoca. No obstant això, s'han documentat una sèrie de característiques comunes en cors afectats d'IC. A nivell cel·lular, com característiques distintives dels miòcits aïllats de cors afectats d'IC, s'han establert la prolongació del potencial d'acció (PA), que implica la remodelació dels canals iònics, i les alteracions en la dinàmica del calci. A nivell dels teixits, el desacoblament intercel·lular i la fibrosi s'identifiquen com els principals factors aritmogènics. Per tal d'estudiar els processos aritmogènics a causa del fenotip de la IC, es va proposar un model cel·lular computacional d'IC utilitzant una versió modificada del model de potencial d'acció ventricular humà de Grandi i els seus col·laboradors, el qual incorpora la formulació del corrent de sodi tardà (INaL). Amb l'objectiu de validar el model es van utilitzar dades experimentals de diverses fonts. A causa de l'extensa literatura en la temàtica, es va realitzar una anàlisi de sensibilitat per tal d'avaluar la influència de les principals corrents iòniques i els paràmetres sobre els biomarcadors relacionats. A més, es van dur a terme simulacions multiescala per a la caracterització d'aquesta patología (fibres i teixits transmurals). El model proposat per al corrent de sodi tardà i la remodelació electrofisiològica dels miòcits de cors afectats d'IC van reproduir amb precisió les observacions experimentals. Una INaL incrementada sembla contribuir de manera important al fenotip electrofisiològic i a la desregulació de l'homeòstasi del calci dels miòcits afectats d'IC. Els resultats de les nostres simulacions en fibra indiquen que la presència de cèl·lules M i el remodelat electrofisiològic heterogeni en el ventricle humà afectat d'IC modulen la dispersió de la durada del potencial d'acció (DPA) i el temps de repolarització (TR). La velocitat de conducció (VC) i el factor de seguretat per a la conducció (FS) també es van reduir en la remodelació estructural progressiva durant la IC. A les nostres simulacions transmurals de teixit ventricular, no s'observà cap reentrada ni en condicions normals ni en presència de la remodelació iònica de la IC. No obstant això, amb determinades quantitats de fibrosi i/o desacoblament cel·lular sí que es provocà l'activitat reentrant. I amb les condicions que produïren la reentrada, el remodelat electrofisiològic de la IC no va alterar l'amplada de la finestra vulnerable (FV). Tanmateix, nivells intermedis de fibrosi i el desacoblament cel·lular sí que ampliaren significativament la FV. En conclusió, nivells elevats de fibrosi en cors afectats d'IC, així com la reducció d'acoblament intercel·lular, es combinen per augmentar els gradients electrofisiològics i reduir la propagació elèctrica. Per tant, la remodelació estructural és un factor clau en la gènesi de la vulnerabilitat a les reentrades, principalment en nivells intermedis de fibrosi i desacoblament intercel·lular.Gómez García, JF. (2015). Multiscale Modeling and Simulation of Human Heart Failure [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/52389TESISCompendi

    An audit of uncertainty in multi-scale cardiac electrophysiology models

    Get PDF
    Models of electrical activation and recovery in cardiac cells and tissue have become valuable research tools, and are beginning to be used in safety-critical applications including guidance for clinical procedures and for drug safety assessment. As a consequence, there is an urgent need for a more detailed and quantitative understanding of the ways that uncertainty and variability influence model predictions. In this paper, we review the sources of uncertainty in these models at different spatial scales, discuss how uncertainties are communicated across scales, and begin to assess their relative importance. We conclude by highlighting important challenges that continue to face the cardiac modelling community, identifying open questions, and making recommendations for future studies. This article is part of the theme issue ‘Uncertainty quantification in cardiac and cardiovascular modelling and simulation’

    A Heart for Diversity: Simulating Variability in Cardiac Arrhythmia Research

    Get PDF
    In cardiac electrophysiology, there exist many sources of inter- and intra-personal variability. These include variability in conditions and environment, and genotypic and molecular diversity, including differences in expression and behavior of ion channels and transporters, which lead to phenotypic diversity (e.g., variable integrated responses at the cell, tissue, and organ levels). These variabilities play an important role in progression of heart disease and arrhythmia syndromes and outcomes of therapeutic interventions. Yet, the traditional in silico framework for investigating cardiac arrhythmias is built upon a parameter/property-averaging approach that typically overlooks the physiological diversity. Inspired by work done in genetics and neuroscience, new modeling frameworks of cardiac electrophysiology have been recently developed that take advantage of modern computational capabilities and approaches, and account for the variance in the biological data they are intended to illuminate. In this review, we outline the recent advances in statistical and computational techniques that take into account physiological variability, and move beyond the traditional cardiac model-building scheme that involves averaging over samples from many individuals in the construction of a highly tuned composite model. We discuss how these advanced methods have harnessed the power of big (simulated) data to study the mechanisms of cardiac arrhythmias, with a special emphasis on atrial fibrillation, and improve the assessment of proarrhythmic risk and drug response. The challenges of using in silico approaches with variability are also addressed and future directions are proposed
    corecore