1,502 research outputs found

    Evaluating Effect of Block Size in Compressed Sensing for Grayscale Images

    Get PDF
    Compressed sensing is an evolving methodology that enables sampling at sub-Nyquist rates and still provides decent signal reconstruction. During the last decade, the reported works have suggested to improve time efficiency by adopting Block based Compressed Sensing (BCS) and reconstruction performance improvement through new algorithms. A trade-off is required between the time efficiency and reconstruction quality. In this paper we have evaluated the significance of block size in BCS to improve reconstruction performance for grayscale images. A parameter variant of BCS [15] based sampling followed by reconstruction through Smoothed Projected Landweber (SPL) technique [16] involving use of Weiner smoothing filter and iterative hard thresholding is applied in this paper. The BCS variant is used to evaluate the effect of block size on image reconstruction quality by carrying out extensive testing on 9200 images acquired from online resources provided by Caltech101 [6], University of Granada [7] and Florida State University [8]. The experimentation showed some consistent results which can improve reconstruction performance in all BCS frameworks including BCS-SPL [17] and its variants [19], [27]. Firstly, the effect of varying block size (4x4, 8x8, 16x16, 32x32 and 64x64) results in changing the Peak Signal to Noise Ratio (PSNR) of reconstructed images from at least 1 dB to a maximum of 16 dB. This challenges the common notion that bigger block sizes always result in better reconstruction performance. Secondly, the variation in reconstruction quality with changing block size is mostly dependent on the image visual contents. Thirdly, images having similar visual contents, irrespective of the size, e.g., those from the same category of Caltech101 [6] gave majority vote for the same Optimum Block Size (OBS). These focused notes may help improve BCS based image capturing at many of the existing applications. For example, experimental results suggest using block size of 8x8 or 16x16 to capture facial identity using BCS. Fourthly, the average processing time taken for BCS and reconstruction through SPL with Lapped transform of Discrete Cosine Transform as the sparifying basis remained 300 milli-seconds for block size of 4x4 to 5 seconds for block size of 64x64. Since the processing time variation remains less than 5 seconds, selecting the OBS may not affect the time constraint in many applications. Analysis reveals that no particular block size is able to provide optimum reconstruction for all images with varying nature of visual contents. Therefore, the selection of block size should be made specific to the particular type of application images depending upon their visual contents

    A Flexible Framework for Designing Trainable Priors with Adaptive Smoothing and Game Encoding

    Get PDF
    We introduce a general framework for designing and training neural network layers whose forward passes can be interpreted as solving non-smooth convex optimization problems, and whose architectures are derived from an optimization algorithm. We focus on convex games, solved by local agents represented by the nodes of a graph and interacting through regularization functions. This approach is appealing for solving imaging problems, as it allows the use of classical image priors within deep models that are trainable end to end. The priors used in this presentation include variants of total variation, Laplacian regularization, bilateral filtering, sparse coding on learned dictionaries, and non-local self similarities. Our models are fully interpretable as well as parameter and data efficient. Our experiments demonstrate their effectiveness on a large diversity of tasks ranging from image denoising and compressed sensing for fMRI to dense stereo matching.Comment: NeurIPS 202

    Digital implementation of the cellular sensor-computers

    Get PDF
    Two different kinds of cellular sensor-processor architectures are used nowadays in various applications. The first is the traditional sensor-processor architecture, where the sensor and the processor arrays are mapped into each other. The second is the foveal architecture, in which a small active fovea is navigating in a large sensor array. This second architecture is introduced and compared here. Both of these architectures can be implemented with analog and digital processor arrays. The efficiency of the different implementation types, depending on the used CMOS technology, is analyzed. It turned out, that the finer the technology is, the better to use digital implementation rather than analog

    1994 Science Information Management and Data Compression Workshop

    Get PDF
    This document is the proceedings from the 'Science Information Management and Data Compression Workshop,' which was held on September 26-27, 1994, at the NASA Goddard Space Flight Center, Greenbelt, Maryland. The Workshop explored promising computational approaches for handling the collection, ingestion, archival and retrieval of large quantities of data in future Earth and space science missions. It consisted of eleven presentations covering a range of information management and data compression approaches that are being or have been integrated into actual or prototypical Earth or space science data information systems, or that hold promise for such an application. The workshop was organized by James C. Tilton and Robert F. Cromp of the NASA Goddard Space Flight Center

    Insight into the fundamental trade-offs of diffusion MRI from polarization-sensitive optical coherence tomography in ex vivo human brain

    Get PDF
    In the first study comparing high angular resolution diffusion MRI (dMRI) in the human brain to axonal orientation measurements from polarization-sensitive optical coherence tomography (PSOCT), we compare the accuracy of orientation estimates from various dMRI sampling schemes and reconstruction methods. We find that, if the reconstruction approach is chosen carefully, single-shell dMRI data can yield the same accuracy as multi-shell data, and only moderately lower accuracy than a full Cartesian-grid sampling scheme. Our results suggest that current dMRI reconstruction approaches do not benefit substantially from ultra-high b-values or from very large numbers of diffusion-encoding directions. We also show that accuracy remains stable across dMRI voxel sizes of 1 ​mm or smaller but degrades at 2 ​mm, particularly in areas of complex white-matter architecture. We also show that, as the spatial resolution is reduced, axonal configurations in a dMRI voxel can no longer be modeled as a small set of distinct axon populations, violating an assumption that is sometimes made by dMRI reconstruction techniques. Our findings have implications for in vivo studies and illustrate the value of PSOCT as a source of ground-truth measurements of white-matter organization that does not suffer from the distortions typical of histological techniques.Published versio

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio
    • 

    corecore