26 research outputs found

    Restorability on 3-connected WDM Networks Under Single and Dual Physical Link Failures

    Get PDF

    Connection availability analysis of span-restorable mesh networks

    Get PDF
    Dual-span failures are the key factor of the system unavailability in a mesh-restorable network with full restorability of single-span failures. Availability analysis based on reliability block diagrams is not suitable to describe failures of mesh-restorable networks with widely distributed and interdependent spare capacities. Therefore, a new concept of restoration-aware connection availability is proposed to facilitate the analysis. Specific models of span-oriented schemes are built and analyzed. By using the proposed computation method and presuming dual-span failures to be the only failure mode, we can exactly calculate the average connection unavailability with an arbitrary allocation rule for spare capacity and no knowledge of any restoration details, or the unavailability of a specific connection with known restoration details. Network performance with respect to connection unavailability, traffic loss, spare capacity consumption, and dual failure restorability is investigated in a case study for an optical span-restorable long-haul networ

    Optimization Methods for Optical Long-Haul and Access Networks

    Get PDF
    Optical communications based on fiber optics and the associated technologies have seen remarkable progress over the past two decades. Widespread deployment of optical fiber has been witnessed in backbone and metro networks as well as access segments connecting to customer premises and homes. Designing and developing a reliable, robust and efficient end-to-end optical communication system have thus emerged as topics of utmost importance both to researchers and network operators. To fulfill these requirements, various problems have surfaced and received attention, such as network planning, capacity placement, traffic grooming, traffic scheduling, and bandwidth allocation. The optimal network design aims at addressing (one or more of) these problems based on some optimization objectives. In this thesis, we consider two of the most important problems in optical networks; namely the survivability in optical long-haul networks and the problem of bandwidth allocation and scheduling in optical access networks. For the former, we present efficient and accurate models for availability-aware design and service provisioning in p-cycle based survivable networks. We also derive optimization models for survivable network design based on p-trail, a more general protection structure, and compare its performance with p-cycles. Indeed, major cost savings can be obtained when the optical access and long-haul subnetworks become closer to each other by means of consolidation of access and metro networks. As this distance between long-haul and access networks reduces, and the need and expectations from passive optical access networks (PONs) soar, it becomes crucial to efficiently manage bandwidth in the access while providing the desired level of service availability in the long-haul backbone. We therefore address in this thesis the problem of bandwidth management and scheduling in passive optical networks; we design efficient joint and non-joint scheduling and bandwidth allocation methods for multichannel PON as well as next generation 10Gbps Ethernet PON (10G-EPON) while addressing the problem of coexistence between 10G-EPONs and multichannel PONs

    Multiple Failure Survivability in WDM Mesh Networks

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryNational Science Foundation (NSF) / ANI 01-21662 ITR and ACI 99-84492 CAREE

    Survivable mesh-network design & optimization to support multiple QoP service classes

    Get PDF
    Every second, vast amounts of data are transferred over communication systems around the world, and as a result, the demands on optical infrastructures are extending beyond the traditional, ring-based architecture. The range of content and services available from the Internet is increasing, and network operations are constantly under pressure to expand their optical networks in order to keep pace with the ever increasing demand for higher speed and more reliable links

    Design of survivable WDM network based on pre-configured protection cycle

    Get PDF
    Wavelength Division Multiplexing (WDM) is an important technique which allows the trans- port of large quantities of data over optical networks. All optical WDM-based networks have been used to improve overall communication capacity and provide an excellent choice for the design of backbone networks. However, due to the high traffic load that each link can carry in a WDM network, survivability against failures becomes very important. Survivability in this context is the ability of the network to maintain continuity of service against failures, since a failure can lead to huge data losses. In recent years, many survivability mechanisms have been studied and their performance assessed through capacity efficiency, restoration time and restorability. Survivability mechanisms for ring and mesh topologies have received particular attention

    Maximizing Restorable Throughput in MPLS Networks

    Get PDF
    corecore