3 research outputs found

    Validating Metrics for a Mastoidectomy Simulator

    Get PDF
    Abstract. One of the primary barriers to the acceptance of surgical simulators is that most simulators still require a significant amount of an instructing surgeon's time to evaluate and provide feedback to the students using them. Thus, an important area of research in this field is the development of metrics that can enable a simulator to be an essentially self-contained teaching tool, capable of identifying and explaining the user's weaknesses. However, it is essential that these metrics be validated in able to ensure that the evaluations provided by the "virtual instructor" match those that the real instructor would provide were he/she present. We have previously proposed a number of algorithms for providing automated feedback in the context of a mastoidectomy simulator. In this paper, we present the results of a user study in which we attempted to establish construct validity (with inter-rater reliability) for our simulator itself and to validate our metrics. Fifteen subjects (8 experts, 7 novices) were asked to perform two virtual mastoidectomies. Each virtual procedure was recorded, and two experienced instructing surgeons assigned global scores that were correlated with subjects' experience levels. We then validated our metrics by correlating the scores generated by our algorithms with the instructors' global ratings, as well as with metric-specific sub-scores assigned by one of the instructors

    Metrics for Evaluating Surgical Microscope Usage During Myringotomy

    Get PDF
    Abstract Although teaching and learning surgical microscope manoeuvring is a fundamental step in middle ear surgical training, currently there is no objective method to teach or assess this skill. This thesis presents an experimental study designed to implement and test sets of metrics capable of numerically evaluating microscope manoeuvrability and qualitatively assessing surgical expertise of a subject during a middle ear surgery called myringotomy. The experiment involved performing a myringotomy on a fixed cadaveric ear. As participants, experienced ear-nose-throat (ENT) surgeons and ENT surgical residents were invited. While performing the procedure, their microscope manoeuvring motions were captured as translational and angular coordinates using an optical tracker. These data were analyzed in terms of motion path length, velocity, acceleration, jitter, manoeuvring volume, smoothness, rotation and time. Participants’ hand motion, body posture and microscopic view were also video recorded to qualitatively assess their surgical expertise. Several metrics were statistically identified as discriminatory. These metrics will be incorporated into a myringotomy surgical simulator to train ENT residents

    A comprehensive evaluation of work and simulation based assessment in otolaryngology training

    Get PDF
    Introduction: The otolaryngology curriculum requires trainees to show evidence of operative competence before completion of training. The General Medical Council recommended that structured assessment be used throughout training to monitor and guide trainee progression. Despite the reduction in operative exposure and the variation in trainee performance, a ‘one size fits all’ approach continues to be applied. The number of procedures performed remains the main indicator of competence. Objectives: To analyse the utilisation, reliability and validity of workplace-based assessments in otolaryngology training. To identify, develop and validate a series of simulation platforms suitable for incorporation into the otolaryngology curriculum. To develop a model of interchangeable workplace- and simulation-based assessment that reflects trainee’s trajectory, audit the delivery of training and set milestones for modular learning. Methods: A detailed review of the literature identified a list of procedure-specific assessment tools as well as simulators suitable to be used as assessment platforms. A simulation-integrated training programme was piloted and models were tested for feasibility, face, content and construct validity before being incorporated into the North London training programme. The outcomes of workplace- and simulation-based assessments of all core and specialty otolaryngology trainees were collated and analysed. Results: The outcomes of 6535 workplace-based assessments were analysed. The strengths and weaknesses of 4 different assessment tools are highlighted. Validated platforms utilising cadavers, animal tissue, synthetic material and virtual reality simulators were incorporated into the curriculum. 60 trainees and 40 consultants participated in the process and found it of great educational value. Conclusion: Assessment with structured feedback is integral to surgical training. Assessment using validated simulation modules can complement that undertaken in the workplace. The outcomes of structures assessments can be used to monitor and guide trainee trajectory at individual and regional level. The derived learning curves can shape and audit future otolaryngological training.Open Acces
    corecore