17,952 research outputs found

    Evaluating Deep Convolutional Neural Networks for Material Classification

    Get PDF
    Determining the material category of a surface from an image is a demanding task in perception that is drawing increasing attention. Following the recent remarkable results achieved for image classification and object detection utilising Convolutional Neural Networks (CNNs), we empirically study material classification of everyday objects employing these techniques. More specifically, we conduct a rigorous evaluation of how state-of-the art CNN architectures compare on a common ground over widely used material databases. Experimental results on three challenging material databases show that the best performing CNN architectures can achieve up to 94.99% mean average precision when classifying materials

    Interpreting Deep Visual Representations via Network Dissection

    Full text link
    The success of recent deep convolutional neural networks (CNNs) depends on learning hidden representations that can summarize the important factors of variation behind the data. However, CNNs often criticized as being black boxes that lack interpretability, since they have millions of unexplained model parameters. In this work, we describe Network Dissection, a method that interprets networks by providing labels for the units of their deep visual representations. The proposed method quantifies the interpretability of CNN representations by evaluating the alignment between individual hidden units and a set of visual semantic concepts. By identifying the best alignments, units are given human interpretable labels across a range of objects, parts, scenes, textures, materials, and colors. The method reveals that deep representations are more transparent and interpretable than expected: we find that representations are significantly more interpretable than they would be under a random equivalently powerful basis. We apply the method to interpret and compare the latent representations of various network architectures trained to solve different supervised and self-supervised training tasks. We then examine factors affecting the network interpretability such as the number of the training iterations, regularizations, different initializations, and the network depth and width. Finally we show that the interpreted units can be used to provide explicit explanations of a prediction given by a CNN for an image. Our results highlight that interpretability is an important property of deep neural networks that provides new insights into their hierarchical structure.Comment: *B. Zhou and D. Bau contributed equally to this work. 15 pages, 27 figure

    Binary Patterns Encoded Convolutional Neural Networks for Texture Recognition and Remote Sensing Scene Classification

    Full text link
    Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The d facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Binary Patterns encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Our final combination outperforms the state-of-the-art without employing fine-tuning or ensemble of RGB network architectures.Comment: To appear in ISPRS Journal of Photogrammetry and Remote Sensin

    Transfer learning in ECG classification from human to horse using a novel parallel neural network architecture

    Get PDF
    Automatic or semi-automatic analysis of the equine electrocardiogram (eECG) is currently not possible because human or small animal ECG analysis software is unreliable due to a different ECG morphology in horses resulting from a different cardiac innervation. Both filtering, beat detection to classification for eECGs are currently poorly or not described in the literature. There are also no public databases available for eECGs as is the case for human ECGs. In this paper we propose the use of wavelet transforms for both filtering and QRS detection in eECGs. In addition, we propose a novel robust deep neural network using a parallel convolutional neural network architecture for ECG beat classification. The network was trained and tested using both the MIT-BIH arrhythmia and an own made eECG dataset with 26.440 beats on 4 classes: normal, premature ventricular contraction, premature atrial contraction and noise. The network was optimized using a genetic algorithm and an accuracy of 97.7% and 92.6% was achieved for the MIT-BIH and eECG database respectively. Afterwards, transfer learning from the MIT-BIH dataset to the eECG database was applied after which the average accuracy, recall, positive predictive value and F1 score of the network increased with an accuracy of 97.1%

    Towards End-to-End Acoustic Localization using Deep Learning: from Audio Signal to Source Position Coordinates

    Full text link
    This paper presents a novel approach for indoor acoustic source localization using microphone arrays and based on a Convolutional Neural Network (CNN). The proposed solution is, to the best of our knowledge, the first published work in which the CNN is designed to directly estimate the three dimensional position of an acoustic source, using the raw audio signal as the input information avoiding the use of hand crafted audio features. Given the limited amount of available localization data, we propose in this paper a training strategy based on two steps. We first train our network using semi-synthetic data, generated from close talk speech recordings, and where we simulate the time delays and distortion suffered in the signal that propagates from the source to the array of microphones. We then fine tune this network using a small amount of real data. Our experimental results show that this strategy is able to produce networks that significantly improve existing localization methods based on \textit{SRP-PHAT} strategies. In addition, our experiments show that our CNN method exhibits better resistance against varying gender of the speaker and different window sizes compared with the other methods.Comment: 18 pages, 3 figures, 8 table
    • …
    corecore