120 research outputs found

    A Fixed-Latency Architecture to Secure GOOSE and Sampled Value Messages in Substation Systems

    Get PDF
    International Electrotechnical Commission (IEC) 62351-6 standard specifies the security mechanisms to protect real-time communications based on IEC 61850. Generic Object Oriented Substation Events (GOOSE) and Sampled Value (SV) messages must be generated, transmitted and processed in less than 3 ms, which challenges the introduction of IEC 62351-6. After evaluating the security threats to IEC 61850 communications and the state of the art in GOOSE and SV security, this work presents a novel architecture based on wire-speed processing able to provide message authentication and confidentiality. This architecture has been implemented and tested to evaluate its performance, resource usage, and the latency introduced. Other proposals in the scientific literature do not support real-time traffic, so they are not suitable for GOOSE and SV messages. Whereas the others exceed the target latency of 3 ms or do not comply with the standards, our design authenticates and encrypts real-time IEC 61850 data in less than 7 mu s-predictable latency-, and complies with IEC 62351:2020.This work was supported in part by the Ministerio de Economia y Competitividad of Spain under Project TEC2017-84011-R, in part by Fondo Europeo de Desarrollo Regional (FEDER) Funds through the Doctorados Industriales program under Grant DI-15-07857, and in part by the Department of Education, Linguistic Policy and Culture of the Basque Government through the Fund for Research Groups of the Basque University System under Grant IT978-16

    Application of NTRU Cryptographic Algorithm for securing SCADA communication

    Full text link
    Supervisory Control and Data Acquisition (SCADA) system is a control system which is widely used in Critical Infrastructure System to monitor and control industrial processes autonomously. Most of the SCADA communication protocols are vulnerable to various types of cyber-related attacks. The currently used security standards for SCADA communication specify the use of asymmetric cryptographic algorithms like RSA or ECC for securing SCADA communications. There are certain performance issues with cryptographic solutions of these specifications when applied to SCADA system with real-time constraints and hardware limitations. To overcome this issue, in this thesis we propose the use of a faster and light-weighted NTRU cryptographic algorithm for authentication and data integrity in securing SCADA communication. Experimental research conducted on ARMv6 based Raspberry Pi and Intel Core machine shows that cryptographic operations of NTRU is two to thirty five times faster than the corresponding RSA or ECC. Usage of NTRU algorithm reduces computation and memory overhead significantly making it suitable for SCADA systems with real-time constraints and hardware limitations

    Security Analysis of Phasor Measurement Units in Smart Grid Communication Infrastructures

    Get PDF
    Phasor Measurement Units (PMUs), or synchrophasors, are rapidly being deployed in the smart grid with the goal of measuring phasor quantities concurrently from wide area distribution substations. By utilizing GPS receivers, PMUs can take a wide area snapshot of power systems. Thus, the possibility of blackouts in the smart grid, the next generation power grid, will be reduced. As the main enabler of Wide Area Measurement Systems (WAMS), PMUs transmit measured values to Phasor Data Concentrators (PDCs) by the synchrophasor standard IEEE C37.118. IEC 61850 and IEC 62351 are the communication protocols for the substation automation system and the security standard for the communication protocol of IEC 61850, respectively. According to the aforementioned communication and security protocols, as well as the implementation constraints of different platforms, HMAC-SHA1 was suggested by the TC 57 WG group in October 2009. The hash-based Message Authentication Code (MAC) is an algorithm for verifying both message integrity and authentication by using an iterative hash function and a supplied secret key. There are a variety of security attacks on the PMU communications infrastructure. Timing Side Channel Attack (SCA) is one of these possible attacks. In this thesis, timing side channel vulnerability against execution time of the HMAC-SHA1 authentication algorithm is studied. Both linear and negative binomial regression are used to model some security features of the stored key, e.g., its length and Hamming weight. The goal is to reveal secret-related information based on leakage models. The results would mitigate the cryptanalysis process of an attacker. Adviser: Yi Qia

    System-on-chip architecture for secure sub-microsecond synchronization systems

    Get PDF
    213 p.En esta tesis, se pretende abordar los problemas que conlleva la protección cibernética del Precision Time Protocol (PTP). Éste es uno de los protocolos de comunicación más sensibles de entre los considerados por los organismos de estandarización para su aplicación en las futuras Smart Grids o redes eléctricas inteligentes. PTP tiene como misión distribuir una referencia de tiempo desde un dispositivo maestro al resto de dispositivos esclavos, situados dentro de una misma red, de forma muy precisa. El protocolo es altamente vulnerable, ya que introduciendo tan sólo un error de tiempo de un microsegundo, pueden causarse graves problemas en las funciones de protección del equipamiento eléctrico, o incluso detener su funcionamiento. Para ello, se propone una nueva arquitectura System-on-Chip basada en dispositivos reconfigurables, con el objetivo de integrar el protocolo PTP y el conocido estándar de seguridad MACsec para redes Ethernet. La flexibilidad que los modernos dispositivos reconfigurables proporcionan, ha sido aprovechada para el diseño de una arquitectura en la que coexisten procesamiento hardware y software. Los resultados experimentales avalan la viabilidad de utilizar MACsec para proteger la sincronización en entornos industriales, sin degradar la precisión del protocolo

    Vulnerability Assessment and Privacy-preserving Computations in Smart Grid

    Get PDF
    Modern advances in sensor, computing, and communication technologies enable various smart grid applications which highlight the vulnerability that requires novel approaches to the field of cybersecurity. While substantial numbers of technologies have been adopted to protect cyber attacks in smart grid, there lacks a comprehensive review of the implementations, impacts, and solutions of cyber attacks specific to the smart grid.In this dissertation, we are motivated to evaluate the security requirements for the smart grid which include three main properties: confidentiality, integrity, and availability. First, we review the cyber-physical security of the synchrophasor network, which highlights all three aspects of security issues. Taking the synchrophasor network as an example, we give an overview of how to attack a smart grid network. We test three types of attacks and show the impact of each attack consisting of denial-of-service attack, sniffing attack, and false data injection attack.Next, we discuss how to protect against each attack. For protecting availability, we examine possible defense strategies for the associated vulnerabilities.For protecting data integrity, a small-scale prototype of secure synchrophasor network is presented with different cryptosystems. Besides, a deep learning based time-series anomaly detector is proposed to detect injected measurement. Our approach observes both data measurements and network traffic features to jointly learn system states and can detect attacks when state vector estimator fails.For protecting data confidentiality, we propose privacy-preserving algorithms for two important smart grid applications. 1) A distributed privacy-preserving quadratic optimization algorithm to solve Security Constrained Optimal Power Flow (SCOPF) problem. The SCOPF problem is decomposed into small subproblems using the Alternating Direction Method of Multipliers (ADMM) and gradient projection algorithms. 2) We use Paillier cryptosystem to secure the computation of the power system dynamic simulation. The IEEE 3-Machine 9-Bus System is used to implement and demonstrate the proposed scheme. The security and performance analysis of our implementations demonstrate that our algorithms can prevent chosen-ciphertext attacks at a reasonable cost

    Optimal and Secure Electricity Market Framework for Market Operation of Multi-Microgrid Systems

    Get PDF
    Traditional power systems were typically based on bulk energy services by large utility companies. However, microgrids and distributed generations have changed the structure of modern power systems as well as electricity markets. Therefore, restructured electricity markets are needed to address energy transactions in modern power systems. In this dissertation, we developed a hierarchical and decentralized electricity market framework for multi-microgrid systems, which clears energy transactions through three market levels; Day-Ahead-Market (DAM), Hour-Ahead-Market (HAM) and Real-Time-Market (RTM). In this market, energy trades are possible between all participants within the microgrids as well as inter-microgrids transactions. In this approach, we developed a game-theoretic-based double auction mechanism for energy transactions in the DAM, while HAM and RTM are cleared by an optimization algorithm and reverse action mechanism, respectively. For data exchange among market players, we developed a secure data-centric communication approach using the Data Distribution Service. Results demonstrated that this electricity market could significantly reduce the energy price and dependency of the multi-microgrid area on the external grid. Furthermore, we developed and verified a hierarchical blockchain-based energy transaction framework for a multi-microgrid system. This framework has a unique structure, which makes it possible to check the feasibility of energy transactions from the power system point of view by evaluating transmission system constraints. The blockchain ledger summarization, microgrid equivalent model development, and market players’ security and privacy enhancement are new approaches to this framework. The research in this dissertation also addresses some ancillary services in power markets such as an optimal power routing in unbalanced microgrids, where we developed a multi-objective optimization model and verified its ability to minimize the power imbalance factor, active power losses and voltage deviation in an unbalanced microgrid. Moreover, we developed an adaptive real-time congestion management algorithm to mitigate congestions in transmission systems using dynamic thermal ratings of transmission lines. Results indicated that the developed algorithm is cost-effective, fast, and reliable for real-time congestion management cases. Finally, we completed research about the communication framework and security algorithm for IEC 61850 Routable GOOSE messages and developed an advanced protection scheme as its application in modern power systems

    Smart grid architecture for rural distribution networks: application to a Spanish pilot network

    Get PDF
    This paper presents a novel architecture for rural distribution grids. This architecture is designed to modernize traditional rural networks into new Smart Grid ones. The architecture tackles innovation actions on both the power plane and the management plane of the system. In the power plane, the architecture focuses on exploiting the synergies between telecommunications and innovative technologies based on power electronics managing low scale electrical storage. In the management plane, a decentralized management system is proposed based on the addition of two new agents assisting the typical Supervisory Control And Data Acquisition (SCADA) system of distribution system operators. Altogether, the proposed architecture enables operators to use more effectively—in an automated and decentralized way—weak rural distribution systems, increasing the capability to integrate new distributed energy resources. This architecture is being implemented in a real Pilot Network located in Spain, in the frame of the European Smart Rural Grid project. The paper also includes a study case showing one of the potentialities of one of the principal technologies developed in the project and underpinning the realization of the new architecture: the so-called Intelligent Distribution Power Router.Postprint (published version
    • …
    corecore