832 research outputs found

    Evaluating Crowd Density Estimators via Their Uncertainty Bounds

    Full text link
    In this work, we use the Belief Function Theory which extends the probabilistic framework in order to provide uncertainty bounds to different categories of crowd density estimators. Our method allows us to compare the multi-scale performance of the estimators, and also to characterize their reliability for crowd monitoring applications requiring varying degrees of prudence

    Bayesian Multi Scale Neural Network for Crowd Counting

    Full text link
    Crowd Counting is a difficult but important problem in computer vision. Convolutional Neural Networks based on estimating the density map over the image has been highly successful in this domain. However dense crowd counting remains an open problem because of severe occlusion and perspective view in which people can be present at various sizes. In this work, we propose a new network which uses a ResNet based feature extractor, downsampling block which uses dilated convolutions and upsampling block using transposed convolutions. We present a novel aggregation module which makes our network robust to the perspective view problem. We present the optimization details, loss functions and the algorithm used in our work. On evaluating on ShanghaiTech, UCF-CC-50 and UCF-QNRF datasets using MSE and MAE as evaluation metrics, our network outperforms previous state of the art approaches while giving uncertainty estimates in a principled bayesian manner.Comment: 10 page

    Sparse tree search optimality guarantees in POMDPs with continuous observation spaces

    Full text link
    Partially observable Markov decision processes (POMDPs) with continuous state and observation spaces have powerful flexibility for representing real-world decision and control problems but are notoriously difficult to solve. Recent online sampling-based algorithms that use observation likelihood weighting have shown unprecedented effectiveness in domains with continuous observation spaces. However there has been no formal theoretical justification for this technique. This work offers such a justification, proving that a simplified algorithm, partially observable weighted sparse sampling (POWSS), will estimate Q-values accurately with high probability and can be made to perform arbitrarily near the optimal solution by increasing computational power

    Proceedings of the 2011 New York Workshop on Computer, Earth and Space Science

    Full text link
    The purpose of the New York Workshop on Computer, Earth and Space Sciences is to bring together the New York area's finest Astronomers, Statisticians, Computer Scientists, Space and Earth Scientists to explore potential synergies between their respective fields. The 2011 edition (CESS2011) was a great success, and we would like to thank all of the presenters and participants for attending. This year was also special as it included authors from the upcoming book titled "Advances in Machine Learning and Data Mining for Astronomy". Over two days, the latest advanced techniques used to analyze the vast amounts of information now available for the understanding of our universe and our planet were presented. These proceedings attempt to provide a small window into what the current state of research is in this vast interdisciplinary field and we'd like to thank the speakers who spent the time to contribute to this volume.Comment: Author lists modified. 82 pages. Workshop Proceedings from CESS 2011 in New York City, Goddard Institute for Space Studie
    • …
    corecore