1,398 research outputs found

    Objective Evaluation Criteria for Shooting Quality of Stereo Cameras over Short Distance

    Get PDF
    Stereo cameras are the basic tools used to obtain stereoscopic image pairs, which can lead to truly great image quality. However, some inappropriate shooting conditions may cause discomfort while viewing stereo images. It is therefore considerably necessary to establish the perceptual criteria that can be used to evaluate the shooting quality of stereo cameras. This article proposes objective quality evaluation criteria based on the characteristics of parallel and toed-in camera configurations. Considering the different internal structures and basic shooting principles, this paper focuses on short-distance shooting conditions and establishes assessment criteria for both parallel and toed-in camera configurations. Experimental results show that the proposed evaluation criteria can predict the visual perception of stereoscopic images and effectively evaluate stereoscopic image quality

    Systems evaluation for computer graphics rendering of the total appearance of paintings

    Get PDF
    One of the challenges when imaging paintings is recording total appearance, that is, the object\u27s color, surface microstructure (gloss), and surface macrostructure (topography). In this thesis, various systems were used to achieve this task, and a psychophysical paired comparison experiment was conducted to evaluate their performance. A pair of strobe lights arranged at 60° from the normal on either side of the painting captured color information where the strobes produced either directional or diffuse illumination geometry. By adding a third strobe, arranging them 120° apart annularly, and cross polarizing, diffuse color and surface normal maps were measured. A fourth strobe was added and the four lights were rearranged 90° apart annularly, capturing similar data. This system was augmented by two scanning linear light sources arranged perpendicularly, facilitating the measurement of spatially varying BRDF and specular maps. A laser scanner was used to capture surface macrostructure and was combined with the diffuse color maps from the four-light configuration. Finally, a dome illumination system was used with software developed by Conservation Heritage Imaging to produce color maps. In all, eight different configurations were achieved and used to image three small paintings with a range of appearance attributes. Twenty-five naive observers compared computer-graphic renderings to the actual painting and judged similarity in terms of total appearance, gloss/shininess, texture, and color. Although the rankings varied with painting, two general trends emerged. First, the four-light configuration with or without the independent laser scanning produced images visually equivalent to conventional strobe illumination. Second, diffuse illumination was always ranked lowest

    Utilization of EREP data in geological evaluation, regional planning, forest management, and water management in North Carolina

    Get PDF
    The author has identified the following significant results. The S190A, S190B, and S192 photographs and imagery were studied, using standard air-photo interpretation techniques supplemented by color additive viewing and density slicing. The EREP data were found to have potential usefulness for natural resource inventory work, water quality monitoring, and land use mapping for specific problems at scales up to 1:30,000. Distinctions between forest types in North Carolina are limited to conifers, mixed conifer-hardwoods, and hardwoods. Geologic interpretation was limited to detection of lineaments; lithologic differentiation and soil group mapping have proved infeasible in North Carolina except for differentiation of wetland soils in the coastal plain. Imagery from the S192 multispectral scanner has proved to be capable of useful discriminations for vegetation and crop analysis

    A Practical Reflectance Transformation Imaging Pipeline for Surface Characterization in Cultural Heritage

    Get PDF
    We present a practical acquisition and processing pipeline to characterize the surface structure of cultural heritage objects. Using a free-form Reflectance Transformation Imaging (RTI) approach, we acquire multiple digital photographs of the studied object shot from a stationary camera. In each photograph, a light is freely positioned around the object in order to cover a wide variety of illumination directions. Multiple reflective spheres and white Lambertian surfaces are added to the scene to automatically recover light positions and to compensate for non-uniform illumination. An estimation of geometry and reflectance parameters (e.g., albedo, normals, polynomial texture maps coefficients) is then performed to locally characterize surface properties. The resulting object description is stable and representative enough of surface features to reliably provide a characterization of measured surfaces. We validate our approach by comparing RTI-acquired data with data acquired with a high-resolution microprofilometer.Terms: "European Union (EU)" & "Horizon 2020" / Action: H2020-EU.3.6.3. - Reflective societies - cultural heritage and European identity / Acronym: Scan4Reco / Grant number: 66509

    LED Selection for Spectral (Multispectral) Imaging

    Get PDF
    Research was performed to design an LED-based spectral imaging system having channels, commonly referred to as a multispectral imaging system. The first part tackled the evaluation of a camera model in predicting the signals of a 10 LED LEDmotive Technologies Spectra Tunelab coupled with a Finger Lakes Instrumentation panchromatic camera. The camera model was shown to be valid and effective in predicting the camera signal taking into account the color transformation noise. The second part involved the computational selection of 10 LEDs in order to determine the optimum combination for a custom Spectra Tunelab. The computational selection used the spectral data provided by the manufacturer for their 37 available LEDs. The LEDs were grouped according to a specified wavelength range. The binning process helped in decreasing the computational cost and time; the possible combinations were reduced to 110,592 from the initial calculated value of 348,330,136 possible combinations. The combinations were further reduced to 1000 according to spectral reflectance Root-Mean-Square-Error (RMSE). The Euclidean and score ranking methods were then used to evaluate color transformation noise, spectral error and colorimetric accuracy. Goodness of Fit Coefficient and Throughput were calculated as well to further evaluate the combinations. A compromise among the values were reached to identify the best possible LED combination. The optimal combination has peak wavelengths at 390 nm, 450 nm, 475 nm, 505 nm, 540 nm, 550 nm, 590 nm, 620 nm, 660 nm, and 745 nm. All the LEDs were narrow band except the LED with its peak wavelength at 550 nm. This particular LED was similar to the human visual system’s luminous efficiency function. Its inclusion was important for colorimetric accuracy and small color transformation noise. When evaluating a large color-gamut target made using commonly used commercial pigments and several artist pigments, the following quality metrics were achieved: average ∆E00 of 0.12, total Noise, N of 3.35, a lightness noise (∆L) of 1.22, spectral reflectance RMSE of 6.4 x10-3, GFC of 0.97 and a total throughput of 646.85

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included

    SIMBIO-SYS : Scientific Cameras and Spectrometer for the BepiColombo Mission

    Get PDF
    The SIMBIO-SYS (Spectrometer and Imaging for MPO BepiColombo Integrated Observatory SYStem) is a complex instrument suite part of the scientific payload of the Mercury Planetary Orbiter for the BepiColombo mission, the last of the cornerstone missions of the European Space Agency (ESA) Horizon + science program. The SIMBIO-SYS instrument will provide all the science imaging capability of the BepiColombo MPO spacecraft. It consists of three channels: the STereo imaging Channel (STC), with a broad spectral band in the 400-950 nm range and medium spatial resolution (at best 58 m/px), that will provide Digital Terrain Model of the entire surface of the planet with an accuracy better than 80 m; the High Resolution Imaging Channel (HRIC), with broad spectral bands in the 400-900 nm range and high spatial resolution (at best 6 m/px), that will provide high-resolution images of about 20% of the surface, and the Visible and near-Infrared Hyperspectral Imaging channel (VIHI), with high spectral resolution (6 nm at finest) in the 400-2000 nm range and spatial resolution reaching 120 m/px, it will provide global coverage at 480 m/px with the spectral information, assuming the first orbit around Mercury with periherm at 480 km from the surface. SIMBIO-SYS will provide high-resolution images, the Digital Terrain Model of the entire surface, and the surface composition using a wide spectral range, as for instance detecting sulphides or material derived by sulphur and carbon oxidation, at resolutions and coverage higher than the MESSENGER mission with a full co-alignment of the three channels. All the data that will be acquired will allow to cover a wide range of scientific objectives, from the surface processes and cartography up to the internal structure, contributing to the libration experiment, and the surface-exosphere interaction. The global 3D and spectral mapping will allow to study the morphology and the composition of any surface feature. In this work, we describe the on-ground calibrations and the results obtained, providing an important overview of the instrument performances. The calibrations have been performed at channel and at system levels, utilizing specific setup in most of the cases realized for SIMBIO-SYS. In the case of the stereo camera (STC), it has been necessary to have a validation of the new stereo concept adopted, based on the push-frame. This work describes also the results of the Near-Earth Commissioning Phase performed few weeks after the Launch (20 October 2018). According to the calibration results and the first commissioning the three channels are working very well.Peer reviewe

    Novel metrics and methodology for the characterisation of 3D imaging systems

    Get PDF
    © 2016 The AuthorsThe modelling, benchmarking and selection process for non-contact 3D imaging systems relies on the ability to characterise their performance. Characterisation methods that require optically compliant artefacts such as matt white spheres or planes, fail to reveal the performance limitations of a 3D sensor as would be encountered when measuring a real world object with problematic surface finish. This paper reports a method of evaluating the performance of 3D imaging systems on surfaces of arbitrary isotropic surface finish, position and orientation. The method involves capturing point clouds from a set of samples in a range of surface orientations and distances from the sensor. Point clouds are processed to create a single performance chart per surface finish, which shows both if a point is likely to be recovered, and the expected point noise as a function of surface orientation and distance from the sensor. In this paper, the method is demonstrated by utilising a low cost pan-tilt table and an active stereo 3D camera. Its performance is characterised by the fraction and quality of recovered data points on aluminium isotropic surfaces ranging in roughness average (Ra) from 0.09 to 0.46 ”m at angles of up to 55° relative to the sensor over a distances from 400 to 800 mm to the scanner. Results from a matt white surface similar to those used in previous characterisation methods contrast drastically with results from even the dullest aluminium sample tested, demonstrating the need to characterise sensors by their limitations, not just best case performance

    Evaluation and improvement of the workflow of digital imaging of fine art reproduction in museums

    Get PDF
    Fine arts refer to a broad spectrum of art formats, ie~painting, calligraphy, photography, architecture, and so forth. Fine art reproductions are to create surrogates of the original artwork that are able to faithfully deliver the aesthetics and feelings of the original. Traditionally, reproductions of fine art are made in the form of catalogs, postcards or books by museums, libraries, archives, and so on (hereafter called museums for simplicity). With the widespread adoption of digital archiving in museums, more and more artwork is reproduced to be viewed on a display. For example, artwork collections are made available through museum websites and Google Art Project for art lovers to view on their own displays. In the thesis, we study the fine art reproduction of paintings in the form of soft copy viewed on displays by answering four questions: (1) what is the impact of the viewing condition and original on image quality evaluation? (2) can image quality be improved by avoiding visual editing in current workflows of fine art reproduction? (3) can lightweight spectral imaging be used for fine art reproduction? and (4) what is the performance of spectral reproductions compared with reproductions by current workflows? We started with evaluating the perceived image quality of fine art reproduction created by representative museums in the United States under controlled and uncontrolled environments with and without the presence of the original artwork. The experimental results suggest that the image quality is highly correlated with the color accuracy of the reproduction only when the original is present and the reproduction is evaluated on a characterized display. We then examined the workflows to create these reproductions, and found that current workflows rely heavily on visual editing and retouching (global and local color adjustments on the digital reproduction) to improve the color accuracy of the reproduction. Visual editing and retouching can be both time-consuming and subjective in nature (depending on experts\u27 own experience and understanding of the artwork) lowering the efficiency of artwork digitization considerably. We therefore propose to improve the workflow of fine art reproduction by (1) automating the process of visual editing and retouching in current workflows based on RGB acquisition systems and by (2) recovering the spectral reflectance of the painting with off-the-shelf equipment under commonly available lighting conditions. Finally, we studied the perceived image quality of reproductions created by current three-channel (RGB) workflows with those by spectral imaging and those based on an exemplar-based method

    On Practical Sampling of Bidirectional Reflectance

    Get PDF
    • 

    corecore