103 research outputs found

    Towards a holistic understanding of the role of green infrastructure in improving urban air quality

    Get PDF
    Air pollution has been identified as a major problem in modern societies, threatening urban population health. Pedestrians, in particular, are directly exposed to one of the main sources of air pollutants: road transport, which is concentrated in proximity to the road, worsening the air. Green infrastructure (GI) has been promoted as a natural method for reducing exposure to local street air pollutants and providing additional Ecosystem Services with a range of environmental, social and economic benefits for citizens. The effectiveness of GI for improving air quality depends on the spatio-temporal context and the species-specific characteristics of the GI. Urban planting could maximise this benefit by a holistic understanding of the effects of GI in cities, balancing its benefits and constraints. However, little is currently known about the application of GI design and planning with regard to air pollution mitigation. Moreover, there is little agreement on the quantifiable effectiveness of GI in improving street air quality as its effectiveness is highly context dependent. Holistic guidance is therefore needed to inform practitioners of site- and species- specifics, trade-offs, and GI maintenance considerations for successful urban planting. This research reviews the academic literature addressing GI-related characteristics in streets, creating a holistic framework to help guide decision-makers on using GI solutions to improve air quality. Additionally, this research aims to understand how and which GI, along with other local characteristics, influence pedestrian air quality and how these characteristics are considered in real-world practice within the United Kingdom. This research progresses through three stages: First, the mechanisms by which GI is considered to influence air quality were identified through literature reviews. A specific literature review was then conducted for each mechanism to extract the associated GI and spatial characteristics that affect the potential for GI to mitigate urban air pollution. In the second stage, this list of characteristics, together with other Ecosystem Services, was discussed in consultation with practitioners in the UK. A survey was conducted to explore and evaluate the recommendations and resources available for planning plantings, as well as the practitioners’ knowledge about the characteristics associated with mitigating air pollution. Supported by results from the survey and the literature reviews, the third stage evaluated (validated) an easy-to-use computational model for its potential use in improving planting decisions for air pollution mitigation. Green infrastructure influences air quality by providing surfaces for pollutant deposition and absorption, effects on airflow and dispersion, and biogenic emissions. The relationship between the specific GI and the spatio-temporal context also influences air quality. Street structure, weather variables, and the type, shape and size of GI influence the dispersion of pollutants, with micro-and macro-morphological traits additionally influencing particulate deposition and gas absorption. In addition, maintaining GI lessens air quality deterioration by controlling biogenic emissions. According to participants in the survey, aesthetics were the principal drivers of urban planting, followed by improving well-being and increasing biodiversity and air pollution mitigation as a lesser priority. Characteristics such as airflow manipulation, leaf surface traits, and biogenic emissions were the less important influences in planting decisions in the UK, despite the fact that these characteristics influence air quality. Perhaps, a lack of communication of current information and low confidence about which specific characteristics have a tangible effect on air quality reduces the incorporation of GI for air pollution mitigation purposes. Uncertainties exist about the quantification of pollutants removed by GI. Field campaigns and computational models still need improvement to address the effectiveness of GI in real-world environments adequately and also to understand whether GI can exert a significant effect on pollutant levels under real-world conditions. This research showed that a promising and easy-to-use model used to evaluate the effectiveness of trees in removing particles was not an acceptable model to study the effect of GI on streets. The validation results showed a poor agreement between wind tunnel data and the model results. More effort is needed to develop better modelling tools that can quantify the actual effect of GI on improving street air quality. This research contributes to the air pollution mitigation field, explicitly helping to inform decision-making for more health-promoting urban settings by optimising the expected benefits of GI through a holistic understanding of their impacts. Facilitating the communication of current evidence through a holistic guide that considers both the benefits and trade-offs of planting decisions for air quality improvement. Improving information on air pollution mitigation to feed the decision-making process might maximise the benefits of GI planting for air pollution mitigation in streets.Open Acces

    Preliminary study in discovering 2-propen-1-one, 1-(2,4-dihydroxyphenyl)-3-(4-methoxyphenyl)- from syzygium aqueum leaves as a tyrosinase inhibitor in food product: experimental and theoretical approach

    Get PDF
    In this study, response surface methodology (RSM) in combination with central composite rotatable design (CCRD) were performed to optimize the extraction parameters for total phenolic content (TPC) on Syzygium aqueum (S. aqueum) leaves. The effect of operational conditions on the extraction of S. aqueum leaves using carbon dioxide (CO2) on TPC was investigated. The conditions used in the supercritical extraction with CO2 included temperatures of (40-70 °C), pressures (2200-4500 psi) and extraction time (40-100 min). The highest TPC (3.5893 mg GAE/mg) was obtained at optimum conditions of 55 °C, 3350 psi and 70 min. The major compound in the optimized crude extract was2-propen-1-one,1-(2,4Dihydroxyphenyl)-3-(4-methoxyphenyl)- (82.65 %) which was identified by GC-MS. COSMO-RS was introduced to study the σ-profile between CO2 and 2-propen-1-one,1-(2,4-Dihydroxyphenyl)-3-(4methoxyphenyl)-. Principal component analysis (PCA) was performed to classify major compound which exhibit similar chemical properties with selected control. 2-propen-1-one,1-(2,4-Dihydroxyphenyl)-3-(4methoxyphenyl)- has similar chemical properties with kaempferol as tyrosinase inhibitor. Molecular electrostatic potential (MEP) and molecular docking were plotted to investigate a recognition manner of 2-propen-1-one,1-(2,4-Dihydroxyphenyl)-3-(4-methoxyphenyl)-upon tyrosinase receptor

    Student Spotlight on Research and Outreach Proceedings

    Get PDF
    ESF\u27s annual Spotlight Symposium is a dynamic forum where graduate and undergraduate students share the results of their research and community service projects. The Spotlight is a student poster session highlighting scholarly efforts
    corecore