1,016 research outputs found

    Hardware Implementations of Scalable and Unified Elliptic Curve Cryptosystem Processors

    Get PDF
    As the amount of information exchanged through the network grows, so does the demand for increased security over the transmission of this information. As the growth of computers increased in the past few decades, more sophisticated methods of cryptography have been developed. One method of transmitting data securely over the network is by using symmetric-key cryptography. However, a drawback of symmetric-key cryptography is the need to exchange the shared key securely. One of the solutions is to use public-key cryptography. One of the modern public-key cryptography algorithms is called Elliptic Curve Cryptography (ECC). The advantage of ECC over some older algorithms is the smaller number of key sizes to provide a similar level of security. As a result, implementations of ECC are much faster and consume fewer resources. In order to achieve better performance, ECC operations are often offloaded onto hardware to alleviate the workload from the servers' processors. The most important and complex operation in ECC schemes is the elliptic curve point multiplication (ECPM). This thesis explores the implementation of hardware accelerators that offload the ECPM operation to hardware. These processors are referred to as ECC processors, or simply ECPs. This thesis targets the efficient hardware implementation of ECPs specifically for the 15 elliptic curves recommended by the National Institute of Standards and Technology (NIST). The main contribution of this thesis is the implementation of highly efficient hardware for scalable and unified finite field arithmetic units that are used in the design of ECPs. In this thesis, scalability refers to the processor's ability to support multiple key sizes without the need to reconfigure the hardware. By doing so, the hardware does not need to be redesigned for the server to handle different levels of security. Unified refers to the ability of the ECP to handle both prime and binary fields. The resultant designs are valuable to the research community and industry, as a single hardware device is able to handle a wide range of ECC operations efficiently and at high speeds. Thus, improving the ability of network servers to handle secure transaction more quickly and improve productivity at lower costs

    The Myth of Superiority of American Encryption Products

    Get PDF
    Encryption software and hardware use sophisticated mathematical algorithms to encipher a message so that only the intended recipient may read it. Fearing that criminals and terrorists will use encryption to evade authorities, the United States now restricts the export of encryption products with key lengths of more than 56 bits. The controls are futile, because strong encryption products are readily available overseas. Foreign-made encryption products are as good as, or better than, U.S.-made products. U.S. cryptographers have no monopoly on the mathematical knowledge and methods used to create strong encryption. Powerful encryption symmetric-key technologies developed in other countries include IDEA and GOST. Researchers in New Zealand have developed very strong public-key encryption systems. As patents on strong algorithms of U.S. origin expire, researchers in other countries will gain additional opportunities to develop strong encryption technology based on those algorithms

    Quantum attacks on Bitcoin, and how to protect against them

    Get PDF
    The key cryptographic protocols used to secure the internet and financial transactions of today are all susceptible to attack by the development of a sufficiently large quantum computer. One particular area at risk are cryptocurrencies, a market currently worth over 150 billion USD. We investigate the risk of Bitcoin, and other cryptocurrencies, to attacks by quantum computers. We find that the proof-of-work used by Bitcoin is relatively resistant to substantial speedup by quantum computers in the next 10 years, mainly because specialized ASIC miners are extremely fast compared to the estimated clock speed of near-term quantum computers. On the other hand, the elliptic curve signature scheme used by Bitcoin is much more at risk, and could be completely broken by a quantum computer as early as 2027, by the most optimistic estimates. We analyze an alternative proof-of-work called Momentum, based on finding collisions in a hash function, that is even more resistant to speedup by a quantum computer. We also review the available post-quantum signature schemes to see which one would best meet the security and efficiency requirements of blockchain applications.Comment: 21 pages, 6 figures. For a rough update on the progress of Quantum devices and prognostications on time from now to break Digital signatures, see https://www.quantumcryptopocalypse.com/quantum-moores-law

    Efficient Arithmetic for the Implementation of Elliptic Curve Cryptography

    Get PDF
    The technology of elliptic curve cryptography is now an important branch in public-key based crypto-system. Cryptographic mechanisms based on elliptic curves depend on the arithmetic of points on the curve. The most important arithmetic is multiplying a point on the curve by an integer. This operation is known as elliptic curve scalar (or point) multiplication operation. A cryptographic device is supposed to perform this operation efficiently and securely. The elliptic curve scalar multiplication operation is performed by combining the elliptic curve point routines that are defined in terms of the underlying finite field arithmetic operations. This thesis focuses on hardware architecture designs of elliptic curve operations. In the first part, we aim at finding new architectures to implement the finite field arithmetic multiplication operation more efficiently. In this regard, we propose novel schemes for the serial-out bit-level (SOBL) arithmetic multiplication operation in the polynomial basis over F_2^m. We show that the smallest SOBL scheme presented here can provide about 26-30\% reduction in area-complexity cost and about 22-24\% reduction in power consumptions for F_2^{163} compared to the current state-of-the-art bit-level multiplier schemes. Then, we employ the proposed SOBL schemes to present new hybrid-double multiplication architectures that perform two multiplications with latency comparable to the latency of a single multiplication. Then, in the second part of this thesis, we investigate the different algorithms for the implementation of elliptic curve scalar multiplication operation. We focus our interest in three aspects, namely, the finite field arithmetic cost, the critical path delay, and the protection strength from side-channel attacks (SCAs) based on simple power analysis. In this regard, we propose a novel scheme for the scalar multiplication operation that is based on processing three bits of the scalar in the exact same sequence of five point arithmetic operations. We analyse the security of our scheme and show that its security holds against both SCAs and safe-error fault attacks. In addition, we show how the properties of the proposed elliptic curve scalar multiplication scheme yields an efficient hardware design for the implementation of a single scalar multiplication on a prime extended twisted Edwards curve incorporating 8 parallel multiplication operations. Our comparison results show that the proposed hardware architecture for the twisted Edwards curve model implemented using the proposed scalar multiplication scheme is the fastest secure SCA protected scalar multiplication scheme over prime field reported in the literature

    HLS-Based Methodology for Fast Iterative Development Applied to Elliptic Curve Arithmetic

    No full text
    International audienceHigh-Level Synthesis (HLS) is used by hardware developers to achieve higher abstraction in circuit descriptions. In order to shorten the hardware development time via HLS, we present an adjustment of the Iterative and Incremental Design (IID) methodology, frequently used in software development. In particular, our methodology is relevant for the development of applications with unusual complexity: the method was applied here to the development of large modular arithmetic, commonly used for cryptography applications (e.g., Elliptic Curves). Rapid feedback on circuit characteristics is used to evaluate deep architectural changes in short time, greatly reducing the time-to-market with respect to hand-made designs. In addition, our approach is highly flexible, since the same generic high-level description can be used to produce an entire set of circuits, each with different area/performance trade-offs. Thanks to the proposed approach, any change to the initial specification (e.g., the curve used) is also very fast, while it may require a large effort in the case of hand-made designs

    A survey of hardware implementations of elliptic curve cryptographic systems

    No full text
    Elliptic Curve Cryptography (ECC) has gained much recognition over the last decades and has established itself among the well known public-key cryptography schemes, not least due its smaller key size and relatively lower computational effort compared to RSA. The wide employment of Elliptic Curve Cryptography in many different application areas has been leading to a variety of implementation types and domains ranging from pure software approaches over hardware implemenations to hardware/software co-designs. The following review provides an overview of state of the art hardware implemenations of ECC, specifically in regard to their targeted design goals. In this context the suitability of the hardware/software approach in regard to the security challenges opposed by the low-end embedded devices of the Internet of Things is briefly examined. The paper also outlines ECC’s vulnerability against quantum attacks and references one possible solution to that problem

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Implementação eficiente da Curve25519 para microcontroladores ARM

    Get PDF
    Orientador: Diego de Freitas AranhaDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Com o advento da computação ubíqua, o fenômeno da Internet das Coisas (de Internet of Things) fará que com inúmeros dispositivos conectem-se um com os outros, enquanto trocam dados muitas vezes sensíveis pela sua natureza. Danos irreparáveis podem ser causados caso o sigilo destes seja quebrado. Isso causa preocupações acerca da segurança da comunicação e dos próprios dispositivos, que geralmente têm carência de mecanismos de proteção contra interferências físicas e pouca ou nenhuma medida de segurança. Enquanto desenvolver criptografia segura e eficiente como um meio de prover segurança à informação não é inédito, esse novo ambiente, com uma grande superfície de ataque, tem imposto novos desafios para a engenharia criptográfica. Uma abordagem segura para resolver este problema é utilizar blocos bem conhecidos e profundamente analisados, tal como o protocolo Segurança da Camada de Transporte (de Transport Layer Security, TLS). Na última versão desse padrão, as opções para Criptografia de Curvas Elípticas (de Elliptic Curve Cryptography - ECC) são expandidas para além de parâmetros estabelecidos por governos, tal como a proposta Curve25519 e protocolos criptográficos relacionados. Esse trabalho pesquisa implementações seguras e eficientes de Curve25519 para construir um esquema de troca de chaves em um microcontrolador ARM Cortex-M4, além do esquema de assinatura digital Ed25519 e a proposta de esquema de assinaturas digitais qDSA. Como resultado, operações de desempenho crítico, tal como o multiplicador de 256 bits, foram otimizadas; em particular, aceleração de 50% foi alcançada, impactando o desempenho de protocolos em alto nívelAbstract: With the advent of ubiquitous computing, the Internet of Things will undertake numerous devices connected to each other, while exchanging data often sensitive by nature. Breaching the secrecy of this data may cause irreparable damage. This raises concerns about the security of their communication and the devices themselves, which usually lack tamper resistance mechanisms or physical protection and even low to no security mesures. While developing efficient and secure cryptography as a mean to provide information security services is not a new problem, this new environment, with a wide attack surface, imposes new challenges to cryptographic engineering. A safe approach to solve this problem is reusing well-known and thoroughly analyzed blocks, such as the Transport Layer Security (TLS) protocol. In the last version of this standard, Elliptic Curve Cryptography options were expanded beyond government-backed parameters, such as the Curve25519 proposal and related cryptographic protocols. This work investigates efficient and secure implementations of Curve25519 to build a key exchange protocol on an ARM Cortex-M4 microcontroller, along the related signature scheme Ed25519 and a digital signature scheme proposal called qDSA. As result, performance-critical operations, such as a 256-bit multiplier, are greatly optimized; in this particular case, a 50% speedup is achieved, impacting the performance of higher-level protocolsMestradoCiência da ComputaçãoMestre em Ciência da ComputaçãoCAPESFuncam
    corecore