1,466 research outputs found

    Temperature Evaluation of NoC Architectures and Dynamically Reconfigurable NoC

    Get PDF
    Advancements in the field of chip fabrication led to the integration of a large number of transistors in a small area, giving rise to the multi–core processor era. Massive multi–core processors facilitate innovation and research in the field of healthcare, defense, entertainment, meteorology and many others. Reduction in chip area and increase in the number of on–chip cores is accompanied by power and temperature issues. In high performance multi–core chips, power and heat are predominant constraints. High performance massive multicore systems suffer from thermal hotspots, exacerbating the problem of reliability in deep submicron technologies. High power consumption not only increases the chip temperature but also jeopardizes the integrity of the system. Hence, there is a need to explore holistic power and thermal optimization and management strategies for massive on–chip multi–core environments. In multi–core environments, the communication fabric plays a major role in deciding the efficiency of the system. In multi–core processor chips this communication infrastructure is predominantly a Network–on–Chip (NoC). Tradition NoC designs incorporate planar interconnects as a result these NoCs have long, multi–hop wireline links for data exchange. Due to the presence of multi–hop planar links such NoC architectures fall prey to high latency, significant power dissipation and temperature hotspots. Networks inspired from nature are envisioned as an enabling technology to achieve highly efficient and low power NoC designs. Adopting wireless technology in such architectures enhance their performance. Placement of wireless interconnects (WIs) alters the behavior of the network and hence a random deployment of WIs may not result in a thermally optimal solution. In such scenarios, the WIs being highly efficient would attract high traffic densities resulting in thermal hotspots. Hence, the location and utilization of the wireless links is a key factor in obtaining a thermal optimal highly efficient Network–on–chip. Optimization of the NoC framework alone is incapable of addressing the effects due to the runtime dynamics of the system. Minimal paths solely optimized for performance in the network may lead to excessive utilization of certain NoC components leading to thermal hotspots. Hence, architectural innovation in conjunction with suitable power and thermal management strategies is the key for designing high performance and energy–efficient multicore systems. This work contributes at exploring various wired and wireless NoC architectures that achieve best trade–offs between temperature, performance and energy–efficiency. It further proposes an adaptive routing scheme which factors in the thermal profile of the chip. The proposed routing mechanism dynamically reacts to the thermal profile of the chip and takes measures to avoid thermal hotspots, achieving a thermally efficient dynamically reconfigurable network on chip architecture

    Evaluation of temperature-performance trade-offs in wireless network-on-chip architectures

    Get PDF
    Continued scaling of device geometries according to Moore\u27s Law is enabling complete end-user systems on a single chip. Massive multicore processors are enablers for many information and communication technology (ICT) innovations spanning various domains, including healthcare, defense, and entertainment. In the design of high-performance massive multicore chips, power and heat are dominant constraints. Temperature hotspots witnessed in multicore systems exacerbate the problem of reliability in deep submicron technologies. Hence, there is a great need to explore holistic power and thermal optimization and management strategies for the massive multicore chips. High power consumption not only raises chip temperature and cooling cost, but also decreases chip reliability and performance. Thus, addressing thermal concerns at different stages of the design and operation is critical to the success of future generation systems. The performance of a multicore chip is also influenced by its overall communication infrastructure, which is predominantly a Network-on-Chip (NoC). The existing method of implementing a NoC with planar metal interconnects is deficient due to high latency, significant power consumption, and temperature hotspots arising out of long, multi-hop wireline links used in data exchange. On-chip wireless networks are envisioned as an enabling technology to design low power and high bandwidth massive multicore architectures. However, optimizing wireless NoCs for best performance does not necessarily guarantee a thermally optimal interconnection architecture. The wireless links being highly efficient attract very high traffic densities which in turn results in temperature hotspots. Therefore, while the wireless links result in better performance and energy-efficiency, they can also cause temperature hotspots and undermine the reliability of the system. Consequently, the location and utilization of the wireless links is an important factor in thermal optimization of high performance wireless Networks-on-Chip. Architectural innovation in conjunction with suitable power and thermal management strategies is the key for designing high performance yet energy-efficient massive multicore chips. This work contributes to exploration of various the design methodologies for establishing wireless NoC architectures that achieve the best trade-offs between temperature, performance and energy-efficiency. It further demonstrates that incorporating Dynamic Thermal Management (DTM) on a multicore chip designed with such temperature and performance optimized Wireless Network-on-Chip architectures improves thermal profile while simultaneously providing lower latency and reduced network energy dissipation compared to its conventional counterparts

    An integrated soft- and hard-programmable multithreaded architecture

    Get PDF

    Schedulability-driven scratchpad memory swapping for resource-constrained real-time embedded systems

    Get PDF
    In resource-constrained real-time embedded systems, scratchpad memory (SPM) is utilized in place of cache to increase performance and enforce consistent behavior of both hard and soft real-time tasks via software-controlled SPM management techniques (SPMMTs). Real-time systems depend on time critical (hard) tasks to complete execution before their deadline times. Many real-time systems also depend on the execution of soft tasks that do not have to complete by hard deadlines. This thesis evaluates a new SPMMT that increases both worst-case task slack time (TST) and soft task processing capabilities, by combining two existing SPMMTs. The schedulability-driven ACETRB / WCETRB swapping (SDAWS) SPMMT of this thesis uses task schedulability characteristics to control the selection of either the average-case execution time reduction based (ACETRB) SPMMT or the worst-case execution time reduction based (WCETRB) SPMMT. While the literature contains examples of combined management techniques, until now there have been none that combine both WCETRB and ACETRB SPMMTs. The advantage of combining them is to achieve WCET reduction comparable to what can be achieved with the WCETRB SPMMT, while achieving significantly reduced ACET relative to the WCETRB SPMMT. Using a stripped-down RTOS and an SPMMT simulator implemented for this work, evaluated resource-constrained scenarios show a reduction in task slack time from the SDAWS SPMMT relative to the WCETRB SPMMT between 20% and 45%. However, the evaluated scenarios also conservatively show that SDAWS can reduce ACET relative to the WCETRB SPMMT by up to 60%

    Simulation, Analysis, and Optimization of Heterogeneous CPU-GPU Systems

    Get PDF
    With the computing industry\u27s recent adoption of the Heterogeneous System Architecture (HSA) standard, we have seen a rapid change in heterogeneous CPU-GPU processor designs. State-of-the-art heterogeneous CPU-GPU processors tightly integrate multicore CPUs and multi-compute unit GPUs together on a single die. This brings the MIMD processing capabilities of the CPU and the SIMD processing capabilities of the GPU together into a single cohesive package with new HSA features comprising better programmability, coherency between the CPU and GPU, shared Last Level Cache (LLC), and shared virtual memory address spaces. These advancements can potentially bring marked gains in heterogeneous processor performance and have piqued the interest of researchers who wish to unlock these potential performance gains. Therefore, in this dissertation I explore the heterogeneous CPU-GPU processor and application design space with the goal of answering interesting research questions, such as, (1) what are the architectural design trade-offs in heterogeneous CPU-GPU processors and (2) how do we best maximize heterogeneous CPU-GPU application performance on a given system. To enable my exploration of the heterogeneous CPU-GPU design space, I introduce a novel discrete event-driven simulation library called KnightSim and a novel computer architectural simulator called M2S-CGM. M2S-CGM includes all of the simulation elements necessary to simulate coherent execution between a CPU and GPU with shared LLC and shared virtual memory address spaces. I then utilize M2S-CGM for the conduct of three architectural studies. First, I study the architectural effects of shared LLC and CPU-GPU coherence on the overall performance of non-collaborative GPU-only applications. Second, I profile and analyze a set of collaborative CPU-GPU applications to determine how to best optimize them for maximum collaborative performance. Third, I study the impact of varying four key architectural parameters on collaborative CPU-GPU performance by varying GPU compute unit coalesce size, GPU to memory controller bandwidth, GPU frequency, and system wide switching fabric latency

    Approaches to multiprocessor error recovery using an on-chip interconnect subsystem

    Get PDF
    For future multicores, a dedicated interconnect subsystem for on-chip monitors was found to be highly beneficial in terms of scalability, performance and area. In this thesis, such a monitor network (MNoC) is used for multicores to support selective error identification and recovery and maintain target chip reliability in the context of dynamic voltage and frequency scaling (DVFS). A selective shared memory multiprocessor recovery is performed using MNoC in which, when an error is detected, only the group of processors sharing an application with the affected processors are recovered. Although the use of DVFS in contemporary multicores provides significant protection from unpredictable thermal events, a potential side effect can be an increased processor exposure to soft errors. To address this issue, a flexible fault prevention and recovery mechanism has been developed to selectively enable a small amount of per-core dual modular redundancy (DMR) in response to increased vulnerability, as measured by the processor architectural vulnerability factor (AVF). Our new algorithm for DMR deployment aims to provide a stable effective soft error rate (SER) by using DMR in response to DVFS caused by thermal events. The algorithm is implemented in real-time on the multicore using MNoC and controller which evaluates thermal information and multicore performance statistics in addition to error information. DVFS experiments with a multicore simulator using standard benchmarks show an average 6% improvement in overall power consumption and a stable SER by using selective DMR versus continuous DMR deployment
    • …
    corecore