10 research outputs found

    Evading Subspaces Over Large Fields and Explicit List-decodable Rank-metric Codes

    Get PDF
    We construct an explicit family of linear rank-metric codes over any field F that enables efficient list decoding up to a fraction rho of errors in the rank metric with a rate of 1-rho-eps, for any desired rho in (0,1) and eps > 0. Previously, a Monte Carlo construction of such codes was known, but this is in fact the first explicit construction of positive rate rank-metric codes for list decoding beyond the unique decoding radius. Our codes are explicit subcodes of the well-known Gabidulin codes, which encode linearized polynomials of low degree via their values at a collection of linearly independent points. The subcode is picked by restricting the message polynomials to an F-subspace that evades certain structured subspaces over an extension field of F. These structured spaces arise from the linear-algebraic list decoder for Gabidulin codes due to Guruswami and Xing (STOC\u2713). Our construction is obtained by combining subspace designs constructed by Guruswami and Kopparty (FOCS\u2713) with subspace-evasive varieties due to Dvir and Lovett (STOC\u2712). We establish a similar result for subspace codes, which are a collection of subspaces, every pair of which have low-dimensional intersection, and which have received much attention recently in the context of network coding. We also give explicit subcodes of folded Reed-Solomon (RS) codes with small folding order that are list-decodable (in the Hamming metric) with optimal redundancy, motivated by the fact that list decoding RS codes reduces to list decoding such folded RS codes. However, as we only list decode a subcode of these codes, the Johnson radius continues to be the best known error fraction for list decoding RS codes

    On the List-Decodability of Random Linear Rank-Metric Codes

    Full text link
    The list-decodability of random linear rank-metric codes is shown to match that of random rank-metric codes. Specifically, an Fq\mathbb{F}_q-linear rank-metric code over Fqm×n\mathbb{F}_q^{m \times n} of rate R=(1ρ)(1nmρ)εR = (1-\rho)(1-\frac{n}{m}\rho)-\varepsilon is shown to be (with high probability) list-decodable up to fractional radius ρ(0,1)\rho \in (0,1) with lists of size at most Cρ,qε\frac{C_{\rho,q}}{\varepsilon}, where Cρ,qC_{\rho,q} is a constant depending only on ρ\rho and qq. This matches the bound for random rank-metric codes (up to constant factors). The proof adapts the approach of Guruswami, H\aa stad, Kopparty (STOC 2010), who established a similar result for the Hamming metric case, to the rank-metric setting

    Lossless Dimension Expanders via Linearized Polynomials and Subspace Designs

    Get PDF
    For a vector space F^n over a field F, an (eta,beta)-dimension expander of degree d is a collection of d linear maps Gamma_j : F^n -> F^n such that for every subspace U of F^n of dimension at most eta n, the image of U under all the maps, sum_{j=1}^d Gamma_j(U), has dimension at least beta dim(U). Over a finite field, a random collection of d = O(1) maps Gamma_j offers excellent "lossless" expansion whp: beta ~~ d for eta >= Omega(1/d). When it comes to a family of explicit constructions (for growing n), however, achieving even modest expansion factor beta = 1+epsilon with constant degree is a non-trivial goal. We present an explicit construction of dimension expanders over finite fields based on linearized polynomials and subspace designs, drawing inspiration from recent progress on list-decoding in the rank-metric. Our approach yields the following: - Lossless expansion over large fields; more precisely beta >= (1-epsilon)d and eta >= (1-epsilon)/d with d = O_epsilon(1), when |F| >= Omega(n). - Optimal up to constant factors expansion over fields of arbitrarily small polynomial size; more precisely beta >= Omega(delta d) and eta >= Omega(1/(delta d)) with d=O_delta(1), when |F| >= n^{delta}. Previously, an approach reducing to monotone expanders (a form of vertex expansion that is highly non-trivial to establish) gave (Omega(1),1+Omega(1))-dimension expanders of constant degree over all fields. An approach based on "rank condensing via subspace designs" led to dimension expanders with beta >rsim sqrt{d} over large fields. Ours is the first construction to achieve lossless dimension expansion, or even expansion proportional to the degree

    Dimension Expanders via Rank Condensers

    Get PDF
    An emerging theory of "linear algebraic pseudorandomness: aims to understand the linear algebraic analogs of fundamental Boolean pseudorandom objects where the rank of subspaces plays the role of the size of subsets. In this work, we study and highlight the interrelationships between several such algebraic objects such as subspace designs, dimension expanders, seeded rank condensers, two-source rank condensers, and rank-metric codes. In particular, with the recent construction of near-optimal subspace designs by Guruswami and Kopparty as a starting point, we construct good (seeded) rank condensers (both lossless and lossy versions), which are a small collection of linear maps F^n to F^t for t<<n such that for every subset of F^n of small rank, its rank is preserved (up to a constant factor in the lossy case) by at least one of the maps. We then compose a tensoring operation with our lossy rank condenser to construct constant-degree dimension expanders over polynomially large fields. That is, we give a constant number of explicit linear maps A_i from F^n to F^n such that for any subspace V of F^n of dimension at most n/2, the dimension of the span of the A_i(V) is at least (1+Omega(1)) times the dimension of V. Previous constructions of such constant-degree dimension expanders were based on Kazhdan\u27s property T (for the case when F has characteristic zero) or monotone expanders (for every field F); in either case the construction was harder than that of usual vertex expanders. Our construction, on the other hand, is simpler. For two-source rank condensers, we observe that the lossless variant (where the output rank is the product of the ranks of the two sources) is equivalent to the notion of a linear rank-metric code. For the lossy case, using our seeded rank condensers, we give a reduction of the general problem to the case when the sources have high (n^Omega(1)) rank. When the sources have constant rank, combining this with an "inner condenser" found by brute-force leads to a two-source rank condenser with output length nearly matching the probabilistic constructions

    On subspace designs

    Full text link
    Guruswami and Xing introduced subspace designs in 2013 to give the first construction of positive rate rank metric codes list-decodable beyond half the distance. In this paper we provide bounds involving the parameters of a subspace design, showing they are tight via explicit constructions. We point out a connection with sum-rank metric codes, dealing with optimal codes and minimal codes with respect to this metric. Applications to two-intersection sets with respect to hyperplanes, two-weight codes, cutting blocking sets and lossless dimension expanders are also provided

    Variety Evasive Subspace Families

    Get PDF

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore