82 research outputs found

    Robust Backdoor Attacks on Object Detection in Real World

    Full text link
    Deep learning models are widely deployed in many applications, such as object detection in various security fields. However, these models are vulnerable to backdoor attacks. Most backdoor attacks were intensively studied on classified models, but little on object detection. Previous works mainly focused on the backdoor attack in the digital world, but neglect the real world. Especially, the backdoor attack's effect in the real world will be easily influenced by physical factors like distance and illumination. In this paper, we proposed a variable-size backdoor trigger to adapt to the different sizes of attacked objects, overcoming the disturbance caused by the distance between the viewing point and attacked object. In addition, we proposed a backdoor training named malicious adversarial training, enabling the backdoor object detector to learn the feature of the trigger with physical noise. The experiment results show this robust backdoor attack (RBA) could enhance the attack success rate in the real world.Comment: 22 pages, 13figure

    Ethical Testing in the Real World: Evaluating Physical Testing of Adversarial Machine Learning

    Get PDF
    This paper critically assesses the adequacy and representativeness of physical domain testing for various adversarial machine learning (ML) attacks against computer vision systems involving human subjects. Many papers that deploy such attacks characterize themselves as "real world." Despite this framing, however, we found the physical or real-world testing conducted was minimal, provided few details about testing subjects and was often conducted as an afterthought or demonstration. Adversarial ML research without representative trials or testing is an ethical, scientific, and health/safety issue that can cause real harms. We introduce the problem and our methodology, and then critique the physical domain testing methodologies employed by papers in the field. We then explore various barriers to more inclusive physical testing in adversarial ML and offer recommendations to improve such testing notwithstanding these challenges.Comment: Accepted to NeurIPS 2020 Workshop on Dataset Curation and Security; Also accepted at Navigating the Broader Impacts of AI Research Workshop. All authors contributed equally. The list of authors is arranged alphabeticall

    Physical Adversarial Attack meets Computer Vision: A Decade Survey

    Full text link
    Although Deep Neural Networks (DNNs) have achieved impressive results in computer vision, their exposed vulnerability to adversarial attacks remains a serious concern. A series of works has shown that by adding elaborate perturbations to images, DNNs could have catastrophic degradation in performance metrics. And this phenomenon does not only exist in the digital space but also in the physical space. Therefore, estimating the security of these DNNs-based systems is critical for safely deploying them in the real world, especially for security-critical applications, e.g., autonomous cars, video surveillance, and medical diagnosis. In this paper, we focus on physical adversarial attacks and provide a comprehensive survey of over 150 existing papers. We first clarify the concept of the physical adversarial attack and analyze its characteristics. Then, we define the adversarial medium, essential to perform attacks in the physical world. Next, we present the physical adversarial attack methods in task order: classification, detection, and re-identification, and introduce their performance in solving the trilemma: effectiveness, stealthiness, and robustness. In the end, we discuss the current challenges and potential future directions.Comment: 32 pages. Under Revie

    Physical Adversarial Attacks for Surveillance: A Survey

    Full text link
    Modern automated surveillance techniques are heavily reliant on deep learning methods. Despite the superior performance, these learning systems are inherently vulnerable to adversarial attacks - maliciously crafted inputs that are designed to mislead, or trick, models into making incorrect predictions. An adversary can physically change their appearance by wearing adversarial t-shirts, glasses, or hats or by specific behavior, to potentially avoid various forms of detection, tracking and recognition of surveillance systems; and obtain unauthorized access to secure properties and assets. This poses a severe threat to the security and safety of modern surveillance systems. This paper reviews recent attempts and findings in learning and designing physical adversarial attacks for surveillance applications. In particular, we propose a framework to analyze physical adversarial attacks and provide a comprehensive survey of physical adversarial attacks on four key surveillance tasks: detection, identification, tracking, and action recognition under this framework. Furthermore, we review and analyze strategies to defend against the physical adversarial attacks and the methods for evaluating the strengths of the defense. The insights in this paper present an important step in building resilience within surveillance systems to physical adversarial attacks

    TransCAB: Transferable Clean-Annotation Backdoor to Object Detection with Natural Trigger in Real-World

    Full text link
    Object detection is the foundation of various critical computer-vision tasks such as segmentation, object tracking, and event detection. To train an object detector with satisfactory accuracy, a large amount of data is required. However, due to the intensive workforce involved with annotating large datasets, such a data curation task is often outsourced to a third party or relied on volunteers. This work reveals severe vulnerabilities of such data curation pipeline. We propose MACAB that crafts clean-annotated images to stealthily implant the backdoor into the object detectors trained on them even when the data curator can manually audit the images. We observe that the backdoor effect of both misclassification and the cloaking are robustly achieved in the wild when the backdoor is activated with inconspicuously natural physical triggers. Backdooring non-classification object detection with clean-annotation is challenging compared to backdooring existing image classification tasks with clean-label, owing to the complexity of having multiple objects within each frame, including victim and non-victim objects. The efficacy of the MACAB is ensured by constructively i abusing the image-scaling function used by the deep learning framework, ii incorporating the proposed adversarial clean image replica technique, and iii combining poison data selection criteria given constrained attacking budget. Extensive experiments demonstrate that MACAB exhibits more than 90% attack success rate under various real-world scenes. This includes both cloaking and misclassification backdoor effect even restricted with a small attack budget. The poisoned samples cannot be effectively identified by state-of-the-art detection techniques.The comprehensive video demo is at https://youtu.be/MA7L_LpXkp4, which is based on a poison rate of 0.14% for YOLOv4 cloaking backdoor and Faster R-CNN misclassification backdoor

    Area is all you need: repeatable elements make stronger adversarial attacks

    Full text link
    Over the last decade, deep neural networks have achieved state of the art in computer vision tasks. These models, however, are susceptible to unusual inputs, known as adversarial examples, that cause them to misclassify or otherwise fail to detect objects. Here, we provide evidence that the increasing success of adversarial attacks is primarily due to increasing their size. We then demonstrate a method for generating the largest possible adversarial patch by building a adversarial pattern out of repeatable elements. This approach achieves a new state of the art in evading detection by YOLOv2 and YOLOv3. Finally, we present an experiment that fails to replicate the prior success of several attacks published in this field, and end with some comments on testing and reproducibility

    Physical Adversarial Examples for Multi-Camera Systems

    Full text link
    Neural networks build the foundation of several intelligent systems, which, however, are known to be easily fooled by adversarial examples. Recent advances made these attacks possible even in air-gapped scenarios, where the autonomous system observes its surroundings by, e.g., a camera. We extend these ideas in our research and evaluate the robustness of multi-camera setups against such physical adversarial examples. This scenario becomes ever more important with the rise in popularity of autonomous vehicles, which fuse the information of several cameras for their driving decision. While we find that multi-camera setups provide some robustness towards past attack methods, we see that this advantage reduces when optimizing on multiple perspectives at once. We propose a novel attack method that we call Transcender-MC, where we incorporate online 3D renderings and perspective projections in the training process. Moreover, we motivate that certain data augmentation techniques can facilitate the generation of successful adversarial examples even further. Transcender-MC is 11% more effective in successfully attacking multi-camera setups than state-of-the-art methods. Our findings offer valuable insights regarding the resilience of object detection in a setup with multiple cameras and motivate the need of developing adequate defense mechanisms against them
    • …
    corecore