277 research outputs found

    Routing Diverse Evacuees with Cognitive Packets

    Get PDF
    This paper explores the idea of smart building evacuation when evacuees can belong to different categories with respect to their ability to move and their health conditions. This leads to new algorithms that use the Cognitive Packet Network concept to tailor different quality of service needs to different evacuees. These ideas are implemented in a simulated environment and evaluated with regard to their effectiveness.Comment: 7 pages, 7 figure

    Routing Diverse Crowds in Emergency with Dynamic Grouping

    Full text link
    Evacuee routing algorithms in emergency typically adopt one single criterion to compute desired paths and ignore the specific requirements of users caused by different physical strength, mobility and level of resistance to hazard. In this paper, we present a quality of service (QoS) driven multi-path routing algorithm to provide diverse paths for different categories of evacuees. This algorithm borrows the concept of Cognitive Packet Network (CPN), which is a flexible protocol that can rapidly solve optimal solution for any user-defined goal function. Spatial information regarding the location and spread of hazards is taken into consideration to avoid that evacuees be directed towards hazardous zones. Furthermore, since previous emergency navigation algorithms are normally insensitive to sudden changes in the hazard environment such as abrupt congestion or injury of civilians, evacuees are dynamically assigned to several groups to adapt their course of action with regard to their on-going physical condition and environments. Simulation results indicate that the proposed algorithm which is sensitive to the needs of evacuees produces better results than the use of a single metric. Simulations also show that the use of dynamic grouping to adjust the evacuees' category and routing algorithms with regard for their on-going health conditions and mobility, can achieve higher survival rates.Comment: Contains 6 pages, 5 pages. Accepted by PerNEM' 201

    Novel applications and contexts for the cognitive packet network

    Get PDF
    Autonomic communication, which is the development of self-configuring, self-adapting, self-optimising and self-healing communication systems, has gained much attention in the network research community. This can be explained by the increasing demand for more sophisticated networking technologies with physical realities that possess computation capabilities and can operate successfully with minimum human intervention. Such systems are driving innovative applications and services that improve the quality of life of citizens both socially and economically. Furthermore, autonomic communication, because of its decentralised approach to communication, is also being explored by the research community as an alternative to centralised control infrastructures for efficient management of large networks. This thesis studies one of the successful contributions in the autonomic communication research, the Cognitive Packet Network (CPN). CPN is a highly scalable adaptive routing protocol that allows for decentralised control in communication. Consequently, CPN has achieved significant successes, and because of the direction of research, we expect it to continue to find relevance. To investigate this hypothesis, we research new applications and contexts for CPN. This thesis first studies Information-Centric Networking (ICN), a future Internet architecture proposal. ICN adopts a data-centric approach such that contents are directly addressable at the network level and in-network caching is easily supported. An optimal caching strategy for an information-centric network is first analysed, and approximate solutions are developed and evaluated. Furthermore, a CPN inspired forwarding strategy for directing requests in such a way that exploits the in-network caching capability of ICN is proposed. The proposed strategy is evaluated via discrete event simulations and shown to be more effective in its search for local cache hits compared to the conventional methods. Finally, CPN is proposed to implement the routing system of an Emergency Cyber-Physical System for guiding evacuees in confined spaces in emergency situations. By exploiting CPN’s QoS capabilities, different paths are assigned to evacuees based on their ongoing health conditions using well-defined path metrics. The proposed system is evaluated via discrete-event simulations and shown to improve survival chances compared to a static system that treats evacuees in the same way.Open Acces

    Examining ant colony optimization performance for ship evacuation

    Get PDF
    Masteroppgave i informasjons- og kommunikasjonsteknologi IKT590 2013 – Universitetet i Agder, GrimstadEvacuating passengers during a fire on board ships is a difficult task and any improvements on current procedures can help save lives. This report describes how an Ant Colony Optimization (ACO) pathfinding algorithm could possibly be used to lead passengers out of this dangerous situation. The ships were modeled from blueprints of real ships and represented as graphs with nodes and vertices. In the simulation passengers were equipped with a smart phone running an application which showed them the way out. The passengers could end up panicking given close proximity to fire or other stressing factors, in which case they would stop following directions. Additionally, high density of passengers in rooms and corridors slowed down the speed of evacuation. The results produced by ACO were compared to Dijkstra’s pathfinding algorithm and were promising. They showed that ACO performed well in dynamic environments and could be used in a crisis situation to guide people out of danger

    A cyber-physical system for dynamic building evacuation

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Universidade do Porto. Faculdade de Engenharia. 201

    Design of evacuation plans for densely urbanised city centres

    Get PDF
    The high population density and tightly packed nature of some city centres make emergency planning for these urban spaces especially important, given the potential for human loss in case of disaster. Historic and recent events have made emergency service planners particularly conscious of the need for preparing evacuation plans in advance. This paper discusses a methodological approach for assisting decision-makers in designing urban evacuation plans. The approach aims at quickly and safely moving the population away from the danger zone into shelters. The plans include determining the number and location of rescue facilities, as well as the paths that people should take from their building to their assigned shelter in case of an occurrence requiring evacuation. The approach is thus of the location–allocation–routing type, through the existing streets network, and takes into account the trade-offs among different aspects of evacuation actions that inevitably come up during the planning stage. All the steps of the procedure are discussed and systematised, along with computational and practical implementation issues, in the context of a case study – the design of evacuation plans for the historical centre of an old European city

    Voronoi diagram with fuzzy number and sensor data in an indoor navigation for emergency situation

    Get PDF
    Finding shortest and safest path during emergency situation is critical. In this paper, an indoor navigation during an emergency time is investigated using the combination of Voronoi Diagram and fuzzy number. The challenge in indoor navigation is to analyses the network when the shortest path algorithm does not work as always expected. There are some existing methods to generate the network model. First, this paper will discuss the feasibility and accuracy of each method when it is implemented on building environment. Next, this paper will discuss selected algorithms that determine the selection of the best route during an emergency situation. The algorithm has to make sure that the selected route is the shortest and the safest route to the destination. During a disaster, there are many uncertainties to deal with in determining the shortest and safest route. Fuzzy logic can be hardly called for to deal with these uncertainties. Based on sensor data, this paper will also discuss how to solve shortest path problem using a fuzzy number

    Intelligent evacuation management systems: A review

    Get PDF
    Crowd and evacuation management have been active areas of research and study in the recent past. Various developments continue to take place in the process of efficient evacuation of crowds in mass gatherings. This article is intended to provide a review of intelligent evacuation management systems covering the aspects of crowd monitoring, crowd disaster prediction, evacuation modelling, and evacuation path guidelines. Soft computing approaches play a vital role in the design and deployment of intelligent evacuation applications pertaining to crowd control management. While the review deals with video and nonvideo based aspects of crowd monitoring and crowd disaster prediction, evacuation techniques are reviewed via the theme of soft computing, along with a brief review on the evacuation navigation path. We believe that this review will assist researchers in developing reliable automated evacuation systems that will help in ensuring the safety of the evacuees especially during emergency evacuation scenarios

    An Emergency-Adaptive Routing Scheme for Wireless Sensor Networks for Building Fire Hazard Monitoring

    Get PDF
    Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work

    An Emergency-Adaptive Routing Scheme for Wireless Sensor Networks for Building Fire Hazard Monitoring

    Get PDF
    Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work
    • …
    corecore