178,625 research outputs found

    Exact algorithms for the order picking problem

    Full text link
    Order picking is the problem of collecting a set of products in a warehouse in a minimum amount of time. It is currently a major bottleneck in supply-chain because of its cost in time and labor force. This article presents two exact and effective algorithms for this problem. Firstly, a sparse formulation in mixed-integer programming is strengthened by preprocessing and valid inequalities. Secondly, a dynamic programming approach generalizing known algorithms for two or three cross-aisles is proposed and evaluated experimentally. Performances of these algorithms are reported and compared with the Traveling Salesman Problem (TSP) solver Concorde

    Taxonomic classification of planning decisions in health care: a review of the state of the art in OR/MS

    Get PDF
    We provide a structured overview of the typical decisions to be made in resource capacity planning and control in health care, and a review of relevant OR/MS articles for each planning decision. The contribution of this paper is twofold. First, to position the planning decisions, a taxonomy is presented. This taxonomy provides health care managers and OR/MS researchers with a method to identify, break down and classify planning and control decisions. Second, following the taxonomy, for six health care services, we provide an exhaustive specification of planning and control decisions in resource capacity planning and control. For each planning and control decision, we structurally review the key OR/MS articles and the OR/MS methods and techniques that are applied in the literature to support decision making

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    Marine baseline and monitoring strategies for Carbon Dioxide Capture and Storage (CCS)

    Get PDF
    The QICS controlled release experiment demonstrates that leaks of carbon dioxide (CO2) gas can be detected by monitoring acoustic, geochemical and biological parameters within a given marine system. However the natural complexity and variability of marine system responses to (artificial) leakage strongly suggests that there are no absolute indicators of leakage or impact that can unequivocally and universally be used for all potential future storage sites. We suggest a multivariate, hierarchical approach to monitoring, escalating from anomaly detection to attribution, quantification and then impact assessment, as required. Given the spatial heterogeneity of many marine ecosystems it is essential that environmental monitoring programmes are supported by a temporally (tidal, seasonal and annual) and spatially resolved baseline of data from which changes can be accurately identified. In this paper we outline and discuss the options for monitoring methodologies and identify the components of an appropriate baseline survey

    Characterising and Testing Deep UV LEDs for Use in Space Applications

    Full text link
    Deep ultraviolet (DUV) light sources are used to neutralise isolated test masses in highly sensitive space-based gravitational experiments. An example is the LISA Pathfinder charge management system, which uses low-pressure mercury lamps. A future gravitational-wave observatory such as eLISA will use UV light-emitting diodes (UV LEDs), which offer numerous advantages over traditional discharge lamps. Such devices have limited space heritage but are are now available from a number of commercial suppliers. Here we report on a test campaign that was carried out to quantify the general properties of three types of commercially available UV LEDs and demonstrate their suitability for use in space. Testing included general electrical and UV output measurements, spectral stability, pulsed performance, temperature dependence as well as thermal vacuum, radiation and vibration survivability

    Fuzzy uncertainty modelling for project planning; application to helicopter maintenance

    Get PDF
    Maintenance is an activity of growing interest specially for critical systems. Particularly, aircraft maintenance costs are becoming an important issue in the aeronautical industry. Managing an aircraft maintenance center is a complex activity. One of the difficulties comes from the numerous uncertainties that affect the activity and disturb the plans at short and medium term. Based on a helicopter maintenance planning and scheduling problem, we study in this paper the integration of uncertainties into tactical and operational multiresource, multi-project planning (respectively Rough Cut Capacity Planning and Resource Constraint Project Scheduling Problem). Our main contributions are in modelling the periodic workload on tactical level considering uncertainties in macro-tasks work contents, and modelling the continuous workload on operational level considering uncertainties in tasks durations. We model uncertainties by a fuzzy/possibilistic approach instead of a stochastic approach since very limited data are available. We refer to the problems as the Fuzzy RoughCut Capacity Problem (FRCCP) and the Fuzzy Resource Constraint Project Scheduling Problem (RCPSP).We apply our models to helicopter maintenance activity within the frame of the Helimaintenance project, an industrial project approved by the French Aerospace Valley cluster which aims at building a center for civil helicopter maintenance

    A matheuristic approach for the Pollution-Routing Problem

    Full text link
    This paper deals with the Pollution-Routing Problem (PRP), a Vehicle Routing Problem (VRP) with environmental considerations, recently introduced in the literature by [Bektas and Laporte (2011), Transport. Res. B-Meth. 45 (8), 1232-1250]. The objective is to minimize operational and environmental costs while respecting capacity constraints and service time windows. Costs are based on driver wages and fuel consumption, which depends on many factors, such as travel distance and vehicle load. The vehicle speeds are considered as decision variables. They complement routing decisions, impacting the total cost, the travel time between locations, and thus the set of feasible routes. We propose a method which combines a local search-based metaheuristic with an integer programming approach over a set covering formulation and a recursive speed-optimization algorithm. This hybridization enables to integrate more tightly route and speed decisions. Moreover, two other "green" VRP variants, the Fuel Consumption VRP (FCVRP) and the Energy Minimizing VRP (EMVRP), are addressed. The proposed method compares very favorably with previous algorithms from the literature and many new improved solutions are reported.Comment: Working Paper -- UFPB, 26 page

    Moving beyond the ‘crisis’: Recommendations for the European Commission’s communication on migration. EPC Discussion Paper, 9 DECEMBER 2019

    Get PDF
    The year 2015 marked the arrival of an unprecedented number of migrants and refugees in the EU. Soon politicians, policymakers and the press dubbed these events a ‘migration crisis’. With the steep increase in public attention putting migration at the very top of the political agenda, right-wing populist parties saw their chance to capitalise on voters’ concerns in a vast majority of EU member states
    corecore