75 research outputs found

    Data Mining and Official Statistics: The Past, the Present and the Future

    Full text link
    Along with the increasing availability of large databases under the purview of National Statistical Institutes, the application of data mining techniques to official statistics is now a hot topic that is far more important at present than it was ever before. Presented in this article is a thorough review of published work to date on the application of data mining in official statistics, and on identification of the techniques that have been explored. In addition, the importance of data mining to official statistics is flagged and a summary of the challenges that have hindered its development over the course of the last two decades is presented

    Data science: a game changer for science and innovation

    Get PDF
    AbstractThis paper shows data science's potential for disruptive innovation in science, industry, policy, and people's lives. We present how data science impacts science and society at large in the coming years, including ethical problems in managing human behavior data and considering the quantitative expectations of data science economic impact. We introduce concepts such as open science and e-infrastructure as useful tools for supporting ethical data science and training new generations of data scientists. Finally, this work outlines SoBigData Research Infrastructure as an easy-to-access platform for executing complex data science processes. The services proposed by SoBigData are aimed at using data science to understand the complexity of our contemporary, globally interconnected society

    Motifs SĂ©quentiels Discriminants pour les puces ADN

    Get PDF
    National audienceDécouvrir de nouvelles informations sur les groupes de gènes impliqués dans une maladie est un véritable challenge. Les puces ADN sont des outils puissants pour l'analyse des expressions de gènes. Elles mesurent l'expression de milliers de gènes dans différentes conditions biologiques. Dans cet article, nous proposons une nouvelle approche mettant en évidence des relations d'ordre entre les expressions de gènes. Tout d'abord, nous extrayons des motifs séquentiels qui peuvent être utilisés comme matériel d'étude par les biologistes. Or, comme la densité des bases issues des puces à ADN rend difficile l'extraction de ces motifs, nous introduisons une source de connaissances pendant le processus de fouille. De cette manière, l'espace de recherche est réduit et les résultats obtenus sont plus pertinents d'un point de vue biologique. Les expérimentations sur des données réelles soulignent la pertinence de notre proposition

    Applying Data Mining Research Methodologies on Information Systems

    Get PDF
    In this paper we considered several frameworks for data mining. These frameworks are based on different approaches, including inductive databases approach, the reductionist statistical approaches, data compression approach, constructive induction approach and some others. We considered advantages and limitations of these frameworks. We presented the view on data mining research as continuous and never- ending development process of an adaptive DM system towards the efficient utilization of available DM techniques for solving a current problem impacted by the dynamically changing environment. We discussed one of the traditional information systems frameworks and, drawing the analogy to this framework, we considered a data mining system as the special kind of adaptive information system. We adapted the information systems development framework for the context of data-mining systems development

    Interactive visual exploration of association rules with rule-focusing methodology

    Get PDF
    International audienceOn account of the enormous amounts of rules that can be produced by data mining algorithms, knowledge post-processing is a difficult stage in an association rule discovery process. In order to find relevant knowledge for decision making, the user (a decision maker specialized in the data studied) needs to rummage through the rules. To assist him/her in this task, we here propose the rule-focusing methodology, an interactive methodology for the visual post-processing of association rules. It allows the user to explore large sets of rules freely by focusing his/her attention on limited subsets. This new approach relies on rule interestingness measures, on a visual representation, and on interactive navigation among the rules. We have implemented the rule-focusing methodology in a prototype system called ARVis. It exploits the user's focus to guide the generation of the rules by means of a specific constraint-based rule-mining algorithm

    Type prediction in RDF knowledge bases using hierarchical multilabel classification

    Get PDF
    Large Semantic Web knowledge bases are often noisy, incorrect, and incomplete with respect to type information. Automatic type prediction can help reduce such incompleteness, and, as previous works show, statistical methods are well-suited for this kind of data. Since most Semantic Web knowledge bases come with an ontology defining a type hierarchy, in this paper, we rephrase the type prediction problem as a hierarchical multilabel classification problem. We propose SLCN, a modification of the local classifier per node approach, which performs feature selection, instance sampling, and class balancing for each local classifier. Our approach improves scalability, facilitating its application on large Semantic Web datasets with high-dimensional feature and label spaces. We compare the performance of our proposed method with a state-of-the-art type prediction approach and popular hierarchical multilabel classifiers, and report on experiments with large-scale RDF datasets

    Monitoring of Tectonic Deformation by Mining Satellite Image Time Series

    Get PDF
    National audienceCet article présente une nouvelle approche pour l'analyse de séries d'images satellite InSAR (Interferometric Synthetic Aperture Radar) et son application au monitoring de fluage le long d'une faille sismique active majeure. Les données InSAR permettent de mesurer les déformations du sol entre deux dates sur de grandes zones géographiques, mais la précision des mesures reste limitée par le bruit du aux variations en temps et en espace des conditions atmosphériques. L'approche proposée combine des techniques d'analyse d'images satellite et des techniques de fouille de données. Elle permet de traiter des séries d'images satellite InSAR de façon non supervisée, même avec des conditions atmosphériques variables, et fournit aux experts des cartes d'évolutions décrivant les déformations du sol. Des résultats expérimentaux sur une série d'images ENVISAT de la faille de Haiyuan (zone Nord-Est du plateau tibétain) sont présentés. Les cartes obtenues montrent un glissement asismique continu superficiel le long d'une portion de la faille, ce qui est consistant avec les modèles géophysiques actuels

    Incremental Mining of Frequent Serial Episodes Considering Multiple Occurrences

    Get PDF
    The need to analyze information from streams arises in a variety of applications. One of its fundamental research directions is to mine sequential patterns over data streams. Current studies mine series of items based on the presence of the pattern in transactions but pay no attention to the series of itemsets and their multiple occurrences. The pattern over a window of itemsets stream and their multiple occurrences, however, provides additional capability to recognize the essential characteristics of the patterns and the inter-relationships among them that are unidentifiable by the existing presence-based studies. In this paper, we study such a new sequential pattern mining problem and propose a corresponding sequential miner with novel strategies to prune the search space efficiently. Experiments on both real and synthetic data show the utility of our approach

    Meta-QSAR: a large-scale application of meta-learning to drug design and discovery.

    Get PDF
    We investigate the learning of quantitative structure activity relationships (QSARs) as a case-study of meta-learning. This application area is of the highest societal importance, as it is a key step in the development of new medicines. The standard QSAR learning problem is: given a target (usually a protein) and a set of chemical compounds (small molecules) with associated bioactivities (e.g. inhibition of the target), learn a predictive mapping from molecular representation to activity. Although almost every type of machine learning method has been applied to QSAR learning there is no agreed single best way of learning QSARs, and therefore the problem area is well-suited to meta-learning. We first carried out the most comprehensive ever comparison of machine learning methods for QSAR learning: 18 regression methods, 3 molecular representations, applied to more than 2700 QSAR problems. (These results have been made publicly available on OpenML and represent a valuable resource for testing novel meta-learning methods.) We then investigated the utility of algorithm selection for QSAR problems. We found that this meta-learning approach outperformed the best individual QSAR learning method (random forests using a molecular fingerprint representation) by up to 13%, on average. We conclude that meta-learning outperforms base-learning methods for QSAR learning, and as this investigation is one of the most extensive ever comparisons of base and meta-learning methods ever made, it provides evidence for the general effectiveness of meta-learning over base-learning
    • …
    corecore