31 research outputs found

    Sylvester: Ushering in the Modern Era of Research on Odd Perfect Numbers

    Full text link
    In 1888, James Joseph Sylvester (1814-1897) published a series of papers that he hoped would pave the way for a general proof of the nonexistence of an odd perfect number (OPN). Seemingly unaware that more than fifty years earlier Benjamin Peirce had proved that an odd perfect number must have at least four distinct prime divisors, Sylvester began his fundamental assault on the problem by establishing the same result. Later that same year, he strengthened his conclusion to five. These findings would help to mark the beginning of the modern era of research on odd perfect numbers. Sylvester\u27s bound stood as the best demonstrated until Gradstein improved it by one in 1925. Today, we know that the number of distinct prime divisors that an odd perfect number can have is at least eight. This was demonstrated by Chein in 1979 in his doctoral thesis. However, he published nothing of it. A complete proof consisting of almost 200 manuscript pages was given independently by Hagis. An outline of it appeared in 1980. What motivated Sylvester\u27s sudden interest in odd perfect numbers? Moreover, we also ask what prompted this mathematician who was primarily noted for his work in algebra to periodically direct his attention to famous unsolved problems in number theory? The objective of this paper is to formulate a response to these questions, as well as to substantiate the assertion that much of the modern work done on the subject of odd perfect numbers has as it roots, the series of papers produced by Sylvester in 1888

    Bounds on k-Regular Ramanujan Graphs and Separator Theorems

    Get PDF
    Expander graphs are a family of graphs that are highly connected. Finding explicit examples of expander graphs which are also sparse is a difficult problem. The best type of expander graph in a. certain sense is a Ramanujan graph. Families of graphs that have separator theorems fail to be Ramanujan if the vertex set gets sufficiently large. Using separator theorems to get an estimate on the expanding constant of graphs, we get bounds 011 the number of vertices for such fc-regular graphs in order for them to be Ramanujan

    Realizability and uniqueness in graphs

    Get PDF
    AbstractConsider a finite graph G(V,E). Let us associate to G a finite list P(G) of invariants. To any P the following two natural problems arise: (R) Realizability. Given P, when is P=P(G) for some graph G?, (U) Uniqueness. Suppose P(G)=P(H) for graphs G and H. When does this imply G ≅ H? The best studied questions in this context are the degree realization problem for (R) and the reconstruction conjecture for (U). We discuss the problems (R) and (U) for the degree sequence and the size sequence of induced subgraphs for undirected and directed graphs, concentrating on the complexity of the corresponding decision problems and their connection to a natural search problem on graphs

    Application of exponential fitting techniques to numerical methods for solving differential equations

    Get PDF
    Ever since the work of Isaac Newton and Gottfried Leibniz in the late 17th century, differential equations (DEs) have been an important concept in many branches of science. Differential equations arise spontaneously in i.a. physics, engineering, chemistry, biology, economics and a lot of fields in between. From the motion of a pendulum, studied by high-school students, to the wave functions of a quantum system, studied by brave scientists: differential equations are common and unavoidable. It is therefore no surprise that a large number of mathematicians have studied, and still study these equations. The better the techniques for solving DEs, the faster the fields where they appear, can advance. Sadly, however, mathematicians have yet to find a technique (or a combination of techniques) that can solve all DEs analytically. Luckily, in the meanwhile, for a lot of applications, approximate solutions are also sufficient. The numerical methods studied in this work compute such approximations. Instead of providing the hypothetical scientist with an explicit, continuous recipe for the solution to their problem, these methods give them an approximation of the solution at a number of discrete points. Numerical methods of this type have been the topic of research since the days of Leonhard Euler, and still are. Nowadays, however, the computations are performed by digital processors, which are well-suited for these methods, even though many of the ideas predate the modern digital computer by almost a few centuries. The ever increasing power of even the smallest processor allows us to devise newer and more elaborate methods. In this work, we will look at a few well-known numerical methods for the solution of differential equations. These methods are combined with a technique called exponential fitting, which produces exponentially fitted methods: classical methods with modified coefficients. The original idea behind this technique is to improve the performance on problems with oscillatory solutions

    Packing and covering in combinatorics

    Get PDF

    Experimental Mathematics

    Get PDF

    Experimental Mathematics

    Get PDF

    Discrete Harmonic Analysis. Representations, Number Theory, Expanders and the Fourier Transform

    Get PDF
    This self-contained book introduces readers to discrete harmonic analysis with an emphasis on the Discrete Fourier Transform and the Fast Fourier Transform on finite groups and finite fields, as well as their noncommutative versions. It also features applications to number theory, graph theory, and representation theory of finite groups. Beginning with elementary material on algebra and number theory, the book then delves into advanced topics from the frontiers of current research, including spectral analysis of the DFT, spectral graph theory and expanders, representation theory of finite groups and multiplicity-free triples, Tao's uncertainty principle for cyclic groups, harmonic analysis on GL(2,Fq), and applications of the Heisenberg group to DFT and FFT. With numerous examples, figures, and over 160 exercises to aid understanding, this book will be a valuable reference for graduate students and researchers in mathematics, engineering, and computer science
    corecore