260 research outputs found

    Binary Biometric Representation through Pairwise Adaptive Phase Quantization

    Get PDF
    Extracting binary strings from real-valued biometric templates is a fundamental step in template compression and protection systems, such as fuzzy commitment, fuzzy extractor, secure sketch, and helper data systems. Quantization and coding is the straightforward way to extract binary representations from arbitrary real-valued biometric modalities. In this paper, we propose a pairwise adaptive phase quantization (APQ) method, together with a long-short (LS) pairing strategy, which aims to maximize the overall detection rate. Experimental results on the FVC2000 fingerprint and the FRGC face database show reasonably good verification performances.\ud \u

    Privacy-Preserving Facial Recognition Using Biometric-Capsules

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)In recent years, developers have used the proliferation of biometric sensors in smart devices, along with recent advances in deep learning, to implement an array of biometrics-based recognition systems. Though these systems demonstrate remarkable performance and have seen wide acceptance, they present unique and pressing security and privacy concerns. One proposed method which addresses these concerns is the elegant, fusion-based Biometric-Capsule (BC) scheme. The BC scheme is provably secure, privacy-preserving, cancellable and interoperable in its secure feature fusion design. In this work, we demonstrate that the BC scheme is uniquely fit to secure state-of-the-art facial verification, authentication and identification systems. We compare the performance of unsecured, underlying biometrics systems to the performance of the BC-embedded systems in order to directly demonstrate the minimal effects of the privacy-preserving BC scheme on underlying system performance. Notably, we demonstrate that, when seamlessly embedded into a state-of-the-art FaceNet and ArcFace verification systems which achieve accuracies of 97.18% and 99.75% on the benchmark LFW dataset, the BC-embedded systems are able to achieve accuracies of 95.13% and 99.13% respectively. Furthermore, we also demonstrate that the BC scheme outperforms or performs as well as several other proposed secure biometric methods

    A Novel Fingerprint Encryption Based on Image and Feature Mosaic

    Get PDF
    Mobile smart devices in the digital era are enhancing personal information security by adopting fingerprint encryption technology, but due to the small size of mobile smart devices, the area of fingerprint image that can be detected is reduced, resulting in the lack of extractable fingerprint feature information, and traditional fingerprint encryption technology is difficult to apply to small area fingerprint images. To solve the application difficulties of small area fingerprint image encryption, a novel small area fingerprint encryption algorithm based on feature and image mosaic was proposed, and the encryption efficiency of the algorithm was verified using FVC2002 and XDFinger database. Results show that the small area fingerprint recognition algorithm based on feature and image mosaic is significantly improved in encryption efficiency, failure capture rate decreases from 36% to 7%, true acceptance rate increases from 44% to 68%, and the feasibility and reliability of the method is verified. Conclusions can promote the application of small area fingerprint encryption technology in mobile smart devices

    A hybrid biometric template protection algorithm in fingerprint biometric system

    Get PDF
    Biometric recognition has achieved a considerable popularity in recent years due its various properties and widespread application in various sectors. These include very top priority sectors like countries boundary security, military, space missions, banks etc. Due to these reasons the stealing of biometric information is a critical issue. To protect this user biometric template information there should be efficient biometric template transformation technique and thereby the privacy of user is preserved. Non-invertible transformation can keep the user template based transformed information maximum secure against the regeneration. But the performance of non-invertible template protection mechanism will be reduced by the increase in security. This limitation of non-invertible biometric transformation should be solved. This research aims to develop a hybrid biometric template protection algorithm to keep up a balance between security and performance in fingerprint biometric system. The hybrid biometric template protection algorithm is developed from the combination of non-invertible biometric transformation and biometric key generation techniques. To meet the research objective this proposed framework composed of three phases: First phase focus on the extraction of fingerprint minutiae and formation of vector table, while second phase focus on develop a hybrid biometric template protection algorithm and finally the third phase focus on evaluation of performance of the proposed algorithm

    Improved fuzzy hashing technique for biometric template protection

    Get PDF
    Biometrics provides a new dimension of security to modern automated applications since each user will need to prove his identity when attempting an access. However, if a stored biometric template is compromised, then the conventional biometric recognition system becomes vulnerable to privacy invasion. This invasion is a permanent one because the biometric template is not replaceable. In this paper, we introduce an improved FuzzyHashing technique for biometric template protection purpose. We demonstrate our implementation in the context of fingerprint biometrics. The experimental results and the security analysis on FVC 2004 DB1 and DB2 fingerprint datasets suggest that the technique is highly feasible in practice

    Security and Efficiency Analysis of the Hamming Distance Computation Protocol Based on Oblivious Transfer

    Get PDF
    open access articleBringer et al. proposed two cryptographic protocols for the computation of Hamming distance. Their first scheme uses Oblivious Transfer and provides security in the semi-honest model. The other scheme uses Committed Oblivious Transfer and is claimed to provide full security in the malicious case. The proposed protocols have direct implications to biometric authentication schemes between a prover and a verifier where the verifier has biometric data of the users in plain form. In this paper, we show that their protocol is not actually fully secure against malicious adversaries. More precisely, our attack breaks the soundness property of their protocol where a malicious user can compute a Hamming distance which is different from the actual value. For biometric authentication systems, this attack allows a malicious adversary to pass the authentication without knowledge of the honest user's input with at most O(n)O(n) complexity instead of O(2n)O(2^n), where nn is the input length. We propose an enhanced version of their protocol where this attack is eliminated. The security of our modified protocol is proven using the simulation-based paradigm. Furthermore, as for efficiency concerns, the modified protocol utilizes Verifiable Oblivious Transfer which does not require the commitments to outputs which improves its efficiency significantly
    corecore