3,345 research outputs found

    Low-Degree Spanning Trees of Small Weight

    Get PDF
    The degree-d spanning tree problem asks for a minimum-weight spanning tree in which the degree of each vertex is at most d. When d=2 the problem is TSP, and in this case, the well-known Christofides algorithm provides a 1.5-approximation algorithm (assuming the edge weights satisfy the triangle inequality). In 1984, Christos Papadimitriou and Umesh Vazirani posed the challenge of finding an algorithm with performance guarantee less than 2 for Euclidean graphs (points in R^n) and d > 2. This paper gives the first answer to that challenge, presenting an algorithm to compute a degree-3 spanning tree of cost at most 5/3 times the MST. For points in the plane, the ratio improves to 3/2 and the algorithm can also find a degree-4 spanning tree of cost at most 5/4 times the MST.Comment: conference version in Symposium on Theory of Computing (1994

    Squarepants in a Tree: Sum of Subtree Clustering and Hyperbolic Pants Decomposition

    Full text link
    We provide efficient constant factor approximation algorithms for the problems of finding a hierarchical clustering of a point set in any metric space, minimizing the sum of minimimum spanning tree lengths within each cluster, and in the hyperbolic or Euclidean planes, minimizing the sum of cluster perimeters. Our algorithms for the hyperbolic and Euclidean planes can also be used to provide a pants decomposition, that is, a set of disjoint simple closed curves partitioning the plane minus the input points into subsets with exactly three boundary components, with approximately minimum total length. In the Euclidean case, these curves are squares; in the hyperbolic case, they combine our Euclidean square pants decomposition with our tree clustering method for general metric spaces.Comment: 22 pages, 14 figures. This version replaces the proof of what is now Lemma 5.2, as the previous proof was erroneou

    Bounded-Angle Spanning Tree: Modeling Networks with Angular Constraints

    Full text link
    We introduce a new structure for a set of points in the plane and an angle α\alpha, which is similar in flavor to a bounded-degree MST. We name this structure α\alpha-MST. Let PP be a set of points in the plane and let 0<α≤2π0 < \alpha \le 2\pi be an angle. An α\alpha-ST of PP is a spanning tree of the complete Euclidean graph induced by PP, with the additional property that for each point p∈Pp \in P, the smallest angle around pp containing all the edges adjacent to pp is at most α\alpha. An α\alpha-MST of PP is then an α\alpha-ST of PP of minimum weight. For α<π/3\alpha < \pi/3, an α\alpha-ST does not always exist, and, for α≥π/3\alpha \ge \pi/3, it always exists. In this paper, we study the problem of computing an α\alpha-MST for several common values of α\alpha. Motivated by wireless networks, we formulate the problem in terms of directional antennas. With each point p∈Pp \in P, we associate a wedge WpW_p of angle α\alpha and apex pp. The goal is to assign an orientation and a radius rpr_p to each wedge WpW_p, such that the resulting graph is connected and its MST is an α\alpha-MST. (We draw an edge between pp and qq if p∈Wqp \in W_q, q∈Wpq \in W_p, and ∣pq∣≤rp,rq|pq| \le r_p, r_q.) Unsurprisingly, the problem of computing an α\alpha-MST is NP-hard, at least for α=π\alpha=\pi and α=2π/3\alpha=2\pi/3. We present constant-factor approximation algorithms for α=π/2,2π/3,π\alpha = \pi/2, 2\pi/3, \pi. One of our major results is a surprising theorem for α=2π/3\alpha = 2\pi/3, which, besides being interesting from a geometric point of view, has important applications. For example, the theorem guarantees that given any set PP of 3n3n points in the plane and any partitioning of the points into nn triplets, one can orient the wedges of each triplet {\em independently}, such that the graph induced by PP is connected. We apply the theorem to the {\em antenna conversion} problem

    Approximation Algorithms for Generalized MST and TSP in Grid Clusters

    Full text link
    We consider a special case of the generalized minimum spanning tree problem (GMST) and the generalized travelling salesman problem (GTSP) where we are given a set of points inside the integer grid (in Euclidean plane) where each grid cell is 1×11 \times 1. In the MST version of the problem, the goal is to find a minimum tree that contains exactly one point from each non-empty grid cell (cluster). Similarly, in the TSP version of the problem, the goal is to find a minimum weight cycle containing one point from each non-empty grid cell. We give a (1+42+ϵ)(1+4\sqrt{2}+\epsilon) and (1.5+82+ϵ)(1.5+8\sqrt{2}+\epsilon)-approximation algorithm for these two problems in the described setting, respectively. Our motivation is based on the problem posed in [7] for a constant approximation algorithm. The authors designed a PTAS for the more special case of the GMST where non-empty cells are connected end dense enough. However, their algorithm heavily relies on this connectivity restriction and is unpractical. Our results develop the topic further
    • …
    corecore