130 research outputs found

    Spanners for Geometric Intersection Graphs

    Full text link
    Efficient algorithms are presented for constructing spanners in geometric intersection graphs. For a unit ball graph in R^k, a (1+\epsilon)-spanner is obtained using efficient partitioning of the space into hypercubes and solving bichromatic closest pair problems. The spanner construction has almost equivalent complexity to the construction of Euclidean minimum spanning trees. The results are extended to arbitrary ball graphs with a sub-quadratic running time. For unit ball graphs, the spanners have a small separator decomposition which can be used to obtain efficient algorithms for approximating proximity problems like diameter and distance queries. The results on compressed quadtrees, geometric graph separators, and diameter approximation might be of independent interest.Comment: 16 pages, 5 figures, Late

    Optimal Random Matchings, Tours, and Spanning Trees in Hierarchically Separated Trees

    Full text link
    We derive tight bounds on the expected weights of several combinatorial optimization problems for random point sets of size nn distributed among the leaves of a balanced hierarchically separated tree. We consider {\it monochromatic} and {\it bichromatic} versions of the minimum matching, minimum spanning tree, and traveling salesman problems. We also present tight concentration results for the monochromatic problems.Comment: 24 pages, to appear in TC

    Triangulating the Square and Squaring the Triangle: Quadtrees and Delaunay Triangulations are Equivalent

    Full text link
    We show that Delaunay triangulations and compressed quadtrees are equivalent structures. More precisely, we give two algorithms: the first computes a compressed quadtree for a planar point set, given the Delaunay triangulation; the second finds the Delaunay triangulation, given a compressed quadtree. Both algorithms run in deterministic linear time on a pointer machine. Our work builds on and extends previous results by Krznaric and Levcopolous and Buchin and Mulzer. Our main tool for the second algorithm is the well-separated pair decomposition(WSPD), a structure that has been used previously to find Euclidean minimum spanning trees in higher dimensions (Eppstein). We show that knowing the WSPD (and a quadtree) suffices to compute a planar Euclidean minimum spanning tree (EMST) in linear time. With the EMST at hand, we can find the Delaunay triangulation in linear time. As a corollary, we obtain deterministic versions of many previous algorithms related to Delaunay triangulations, such as splitting planar Delaunay triangulations, preprocessing imprecise points for faster Delaunay computation, and transdichotomous Delaunay triangulations.Comment: 37 pages, 13 figures, full version of a paper that appeared in SODA 201

    On Locality-Sensitive Orderings and Their Applications

    Get PDF
    For any constant d and parameter epsilon > 0, we show the existence of (roughly) 1/epsilon^d orderings on the unit cube [0,1)^d, such that any two points p, q in [0,1)^d that are close together under the Euclidean metric are "close together" in one of these linear orderings in the following sense: the only points that could lie between p and q in the ordering are points with Euclidean distance at most epsilon | p - q | from p or q. These orderings are extensions of the Z-order, and they can be efficiently computed. Functionally, the orderings can be thought of as a replacement to quadtrees and related structures (like well-separated pair decompositions). We use such orderings to obtain surprisingly simple algorithms for a number of basic problems in low-dimensional computational geometry, including (i) dynamic approximate bichromatic closest pair, (ii) dynamic spanners, (iii) dynamic approximate minimum spanning trees, (iv) static and dynamic fault-tolerant spanners, and (v) approximate nearest neighbor search
    • …
    corecore