46,895 research outputs found

    ACO for continuous function optimization: a performance analysis

    Get PDF
    The performance of the meta-heuristic algorithms often depends on their parameter settings. Appropriate tuning of the underlying parameters can drastically improve the performance of a meta-heuristic. The Ant Colony Optimization (ACO), a population based meta-heuristic algorithm inspired by the foraging behavior of the ants, is no different. Fundamentally, the ACO depends on the construction of new solutions, variable by variable basis using Gaussian sampling of the selected variables from an archive of solutions. A comprehensive performance analysis of the underlying parameters such as: selection strategy, distance measure metric and pheromone evaporation rate of the ACO suggests that the Roulette Wheel Selection strategy enhances the performance of the ACO due to its ability to provide non-uniformity and adequate diversity in the selection of a solution. On the other hand, the Squared Euclidean distance-measure metric offers better performance than other distance-measure metrics. It is observed from the analysis that the ACO is sensitive towards the evaporation rate. Experimental analysis between classical ACO and other meta-heuristic suggested that the performance of the well-tuned ACO surpasses its counterparts

    An analysis of word embedding spaces and regularities

    Get PDF
    Word embeddings are widely use in several applications due to their ability to capture semantic relationships between words as relations between vectors in high dimensional spaces. One of the main problems to obtain the information is to deal with the phenomena known as the Curse of Dimensionality, the fact that some intuitive results for well known distances are not valid in high dimensional contexts. In this thesis we explore the problem to distinguish between synonyms or antonyms pairs of words and non-related pairs of words attending just to the distance between the words of the pair. We considerer several norms and explore the problem in the two principal kinds of embeddings, GloVe and Word2Vec

    Visual identification by signature tracking

    Get PDF
    We propose a new camera-based biometric: visual signature identification. We discuss the importance of the parameterization of the signatures in order to achieve good classification results, independently of variations in the position of the camera with respect to the writing surface. We show that affine arc-length parameterization performs better than conventional time and Euclidean arc-length ones. We find that the system verification performance is better than 4 percent error on skilled forgeries and 1 percent error on random forgeries, and that its recognition performance is better than 1 percent error rate, comparable to the best camera-based biometrics

    Algorithmic and Statistical Perspectives on Large-Scale Data Analysis

    Full text link
    In recent years, ideas from statistics and scientific computing have begun to interact in increasingly sophisticated and fruitful ways with ideas from computer science and the theory of algorithms to aid in the development of improved worst-case algorithms that are useful for large-scale scientific and Internet data analysis problems. In this chapter, I will describe two recent examples---one having to do with selecting good columns or features from a (DNA Single Nucleotide Polymorphism) data matrix, and the other having to do with selecting good clusters or communities from a data graph (representing a social or information network)---that drew on ideas from both areas and that may serve as a model for exploiting complementary algorithmic and statistical perspectives in order to solve applied large-scale data analysis problems.Comment: 33 pages. To appear in Uwe Naumann and Olaf Schenk, editors, "Combinatorial Scientific Computing," Chapman and Hall/CRC Press, 201

    Convergence Analysis of an Inexact Feasible Interior Point Method for Convex Quadratic Programming

    Get PDF
    In this paper we will discuss two variants of an inexact feasible interior point algorithm for convex quadratic programming. We will consider two different neighbourhoods: a (small) one induced by the use of the Euclidean norm which yields a short-step algorithm and a symmetric one induced by the use of the infinity norm which yields a (practical) long-step algorithm. Both algorithms allow for the Newton equation system to be solved inexactly. For both algorithms we will provide conditions for the level of error acceptable in the Newton equation and establish the worst-case complexity results
    corecore